A generalization of groups with many almost normal subgroups
A subgroup H of a group G is called almost normal in G if it has finitely many conjugates in G. A classic result of B. H. Neumann informs us that |G:Z(G)| is finite if and only if each H is almost normal in G. Starting from this result, we investigate the structure of a group in which each non-finit...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2010 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154600 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A generalization of groups with many almost normal subgroups / F.G. Russo // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 1. — С. 79–85. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154600 |
|---|---|
| record_format |
dspace |
| spelling |
Russo, F.G. 2019-06-15T16:41:40Z 2019-06-15T16:41:40Z 2010 A generalization of groups with many almost normal subgroups / F.G. Russo // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 1. — С. 79–85. — Бібліогр.: 21 назв. — англ. 1726-3255 2010 Mathematics Subject Classification:20C07; 20D10; 20F24. https://nasplib.isofts.kiev.ua/handle/123456789/154600 A subgroup H of a group G is called almost normal in G if it has finitely many conjugates in G. A classic result of B. H. Neumann informs us that |G:Z(G)| is finite if and only if each H is almost normal in G. Starting from this result, we investigate the structure of a group in which each non-finitely generated subgroup satisfies a property, which is weaker to be almost normal This paper is dedicated to the memory of my father and to the future of my brother en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics A generalization of groups with many almost normal subgroups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A generalization of groups with many almost normal subgroups |
| spellingShingle |
A generalization of groups with many almost normal subgroups Russo, F.G. |
| title_short |
A generalization of groups with many almost normal subgroups |
| title_full |
A generalization of groups with many almost normal subgroups |
| title_fullStr |
A generalization of groups with many almost normal subgroups |
| title_full_unstemmed |
A generalization of groups with many almost normal subgroups |
| title_sort |
generalization of groups with many almost normal subgroups |
| author |
Russo, F.G. |
| author_facet |
Russo, F.G. |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A subgroup H of a group G is called almost normal in G if it has finitely many conjugates in G. A classic result of B. H. Neumann informs us that |G:Z(G)| is finite if and only if each H is almost normal in G. Starting from this result, we investigate the structure of a group in which each non-finitely generated subgroup satisfies a property, which is weaker to be almost normal
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154600 |
| citation_txt |
A generalization of groups with many almost normal subgroups / F.G. Russo // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 1. — С. 79–85. — Бібліогр.: 21 назв. — англ. |
| work_keys_str_mv |
AT russofg ageneralizationofgroupswithmanyalmostnormalsubgroups AT russofg generalizationofgroupswithmanyalmostnormalsubgroups |
| first_indexed |
2025-11-29T13:28:34Z |
| last_indexed |
2025-11-29T13:28:34Z |
| _version_ |
1850854998670311424 |