On the existence of complements in a group to some abelian normal subgroups

A complement to a proper normal subgroup H of a group G is a subgroup K such that G=HK and H∩K=⟨1⟩. Equivalently it is said that G splits over H. In this paper we develop a theory that we call hierarchy of centralizers to obtain sufficient conditions for a group to split over a certain abelian subgr...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2010
Main Authors: Dixon, M.R., Kurdachenko, L.A., Javier Otal
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/154605
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the existence of complements in a group to some abelian normal subgroups / M.R. Dixon, L.A. Kurdachenko, Javier Otal // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 18–41. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154605
record_format dspace
spelling Dixon, M.R.
Kurdachenko, L.A.
Javier Otal
2019-06-15T16:48:42Z
2019-06-15T16:48:42Z
2010
On the existence of complements in a group to some abelian normal subgroups / M.R. Dixon, L.A. Kurdachenko, Javier Otal // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 18–41. — Бібліогр.: 32 назв. — англ.
1726-3255
2010 Mathematics Subject Classification:20E22, 20E26, 20F50
https://nasplib.isofts.kiev.ua/handle/123456789/154605
A complement to a proper normal subgroup H of a group G is a subgroup K such that G=HK and H∩K=⟨1⟩. Equivalently it is said that G splits over H. In this paper we develop a theory that we call hierarchy of centralizers to obtain sufficient conditions for a group to split over a certain abelian subgroup. We apply these results to obtain an entire group-theoretical wide extension of an important result due to D. J. S. Robinson formerly shown by cohomological methods.
The second and third authors were supported by Proyecto MTM2010-19938-C03-03of Direcci ́on General de Investigaci ́on del MICINN (Spain)
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the existence of complements in a group to some abelian normal subgroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the existence of complements in a group to some abelian normal subgroups
spellingShingle On the existence of complements in a group to some abelian normal subgroups
Dixon, M.R.
Kurdachenko, L.A.
Javier Otal
title_short On the existence of complements in a group to some abelian normal subgroups
title_full On the existence of complements in a group to some abelian normal subgroups
title_fullStr On the existence of complements in a group to some abelian normal subgroups
title_full_unstemmed On the existence of complements in a group to some abelian normal subgroups
title_sort on the existence of complements in a group to some abelian normal subgroups
author Dixon, M.R.
Kurdachenko, L.A.
Javier Otal
author_facet Dixon, M.R.
Kurdachenko, L.A.
Javier Otal
publishDate 2010
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A complement to a proper normal subgroup H of a group G is a subgroup K such that G=HK and H∩K=⟨1⟩. Equivalently it is said that G splits over H. In this paper we develop a theory that we call hierarchy of centralizers to obtain sufficient conditions for a group to split over a certain abelian subgroup. We apply these results to obtain an entire group-theoretical wide extension of an important result due to D. J. S. Robinson formerly shown by cohomological methods.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154605
citation_txt On the existence of complements in a group to some abelian normal subgroups / M.R. Dixon, L.A. Kurdachenko, Javier Otal // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 18–41. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT dixonmr ontheexistenceofcomplementsinagrouptosomeabeliannormalsubgroups
AT kurdachenkola ontheexistenceofcomplementsinagrouptosomeabeliannormalsubgroups
AT javierotal ontheexistenceofcomplementsinagrouptosomeabeliannormalsubgroups
first_indexed 2025-11-30T15:32:18Z
last_indexed 2025-11-30T15:32:18Z
_version_ 1850857974405267456