Partitions of groups and matroids into independent subsets
Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2010 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154609 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
|
|---|---|
| ISSN: | 1726-3255 |