Partitions of groups and matroids into independent subsets

Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2010
Hauptverfasser: Banakh, T., Protasov, I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154609
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154609
record_format dspace
spelling Banakh, T.
Protasov, I.
2019-06-15T16:50:24Z
2019-06-15T16:50:24Z
2010
Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:05B35, 05A18.
https://nasplib.isofts.kiev.ua/handle/123456789/154609
Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Partitions of groups and matroids into independent subsets
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Partitions of groups and matroids into independent subsets
spellingShingle Partitions of groups and matroids into independent subsets
Banakh, T.
Protasov, I.
title_short Partitions of groups and matroids into independent subsets
title_full Partitions of groups and matroids into independent subsets
title_fullStr Partitions of groups and matroids into independent subsets
title_full_unstemmed Partitions of groups and matroids into independent subsets
title_sort partitions of groups and matroids into independent subsets
author Banakh, T.
Protasov, I.
author_facet Banakh, T.
Protasov, I.
publishDate 2010
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154609
citation_txt Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT banakht partitionsofgroupsandmatroidsintoindependentsubsets
AT protasovi partitionsofgroupsandmatroidsintoindependentsubsets
first_indexed 2025-12-07T17:34:33Z
last_indexed 2025-12-07T17:34:33Z
_version_ 1850871773673816064