Partitions of groups and matroids into independent subsets
Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2010 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154609 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154609 |
|---|---|
| record_format |
dspace |
| spelling |
Banakh, T. Protasov, I. 2019-06-15T16:50:24Z 2019-06-15T16:50:24Z 2010 Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:05B35, 05A18. https://nasplib.isofts.kiev.ua/handle/123456789/154609 Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Partitions of groups and matroids into independent subsets Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Partitions of groups and matroids into independent subsets |
| spellingShingle |
Partitions of groups and matroids into independent subsets Banakh, T. Protasov, I. |
| title_short |
Partitions of groups and matroids into independent subsets |
| title_full |
Partitions of groups and matroids into independent subsets |
| title_fullStr |
Partitions of groups and matroids into independent subsets |
| title_full_unstemmed |
Partitions of groups and matroids into independent subsets |
| title_sort |
partitions of groups and matroids into independent subsets |
| author |
Banakh, T. Protasov, I. |
| author_facet |
Banakh, T. Protasov, I. |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Can the set R∖{0} be covered by countably many linearly (algebraically) independent subsets over the field Q? We use a matroid approach to show that an answer is ``Yes'' under the Continuum Hypothesis, and ``No'' under its negation.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154609 |
| citation_txt |
Partitions of groups and matroids into independent subsets / T. Banakh, I. Protasov // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 1–7. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT banakht partitionsofgroupsandmatroidsintoindependentsubsets AT protasovi partitionsofgroupsandmatroidsintoindependentsubsets |
| first_indexed |
2025-12-07T17:34:33Z |
| last_indexed |
2025-12-07T17:34:33Z |
| _version_ |
1850871773673816064 |