A variant of the primitive element theorem for separable extensions of a commutative ring
In this article we show that any strongly separable extension of a commutative ring R can be embedded into another one having primitive element whenever every boolean localization of R modulo its Jacobson radical is von Neumann regular and locally uniform.
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2009 |
| Main Authors: | Bagio, D., Paques, A. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2009
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154618 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A variant of the primitive element theorem for separable extensions of a commutative ring / D. Bagio, A. Paques // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 20–26. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
A variant of the primitive element theorem for separable extensions of a commutative ring
by: Bagio, Dirceu, et al.
Published: (2018) -
A variant of the primitive element theorem for separable extensions of a commutative ring
by: Bagio, Dirceu, et al.
Published: (2018) -
Some primitive elements for the Artin--Schreier extensions of finite fields
by: R. B. Popovych
Published: (2015) -
Commutative ring extensions defined by perfect-like conditions
by: Alaoui Ismaili, et al.
Published: (2023) -
An outer measure on a commutative ring
by: D. Dudzik, et al.
Published: (2016)