Semisimple group codes and dihedral codes

We consider codes that are given as two-sided ideals in a semisimple finite group algebra FqG defined by idempotents constructed from subgroups of G in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals o f FqG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2009
Hauptverfasser: Dutra, F.S., Ferraz, R.A., Milies, C.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154622
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Semisimple group codes and dihedral codes/ F.S. Dutra, R.A. Ferraz, C.P. Milies // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 28–48. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154622
record_format dspace
spelling Dutra, F.S.
Ferraz, R.A.
Milies, C.P.
2019-06-15T16:58:39Z
2019-06-15T16:58:39Z
2009
Semisimple group codes and dihedral codes/ F.S. Dutra, R.A. Ferraz, C.P. Milies // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 28–48. — Бібліогр.: 12 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:94B15, 94B60, 16S34, 20C05.
https://nasplib.isofts.kiev.ua/handle/123456789/154622
We consider codes that are given as two-sided ideals in a semisimple finite group algebra FqG defined by idempotents constructed from subgroups of G in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals o f FqG in the case when G is a dihedral group and extend these results also to a family of quaternion group codes. In the final sectio n, we give a method of decoding; i.e., of finding and correcting eve ntual transmission errors.
Research supported by FAPESP, Procs. 02/02933-0 and 00/07291-0 and CNPqProc. 300243/79-0 (RN)
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Semisimple group codes and dihedral codes
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Semisimple group codes and dihedral codes
spellingShingle Semisimple group codes and dihedral codes
Dutra, F.S.
Ferraz, R.A.
Milies, C.P.
title_short Semisimple group codes and dihedral codes
title_full Semisimple group codes and dihedral codes
title_fullStr Semisimple group codes and dihedral codes
title_full_unstemmed Semisimple group codes and dihedral codes
title_sort semisimple group codes and dihedral codes
author Dutra, F.S.
Ferraz, R.A.
Milies, C.P.
author_facet Dutra, F.S.
Ferraz, R.A.
Milies, C.P.
publishDate 2009
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider codes that are given as two-sided ideals in a semisimple finite group algebra FqG defined by idempotents constructed from subgroups of G in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals o f FqG in the case when G is a dihedral group and extend these results also to a family of quaternion group codes. In the final sectio n, we give a method of decoding; i.e., of finding and correcting eve ntual transmission errors.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154622
citation_txt Semisimple group codes and dihedral codes/ F.S. Dutra, R.A. Ferraz, C.P. Milies // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 28–48. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT dutrafs semisimplegroupcodesanddihedralcodes
AT ferrazra semisimplegroupcodesanddihedralcodes
AT miliescp semisimplegroupcodesanddihedralcodes
first_indexed 2025-12-07T19:28:21Z
last_indexed 2025-12-07T19:28:21Z
_version_ 1850878933301460992