A Morita context related to finite groups acting partially on a ring

In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2009
Hauptverfasser: Guzman, J.A., Lazzarin, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154630
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154630
record_format dspace
spelling Guzman, J.A.
Lazzarin, J.
2019-06-15T17:01:43Z
2019-06-15T17:01:43Z
2009
A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:16S35, 16R30, 13C60, 16N60.
https://nasplib.isofts.kiev.ua/handle/123456789/154630
In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG.
Both authors were partially supported by Conselho Nacionalde DesenvolvimentoCient ́ıfico e Tecnol ́ogico (CNPq, Brazil).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A Morita context related to finite groups acting partially on a ring
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Morita context related to finite groups acting partially on a ring
spellingShingle A Morita context related to finite groups acting partially on a ring
Guzman, J.A.
Lazzarin, J.
title_short A Morita context related to finite groups acting partially on a ring
title_full A Morita context related to finite groups acting partially on a ring
title_fullStr A Morita context related to finite groups acting partially on a ring
title_full_unstemmed A Morita context related to finite groups acting partially on a ring
title_sort morita context related to finite groups acting partially on a ring
author Guzman, J.A.
Lazzarin, J.
author_facet Guzman, J.A.
Lazzarin, J.
publishDate 2009
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper we consider partial actions of groups on rings, partial skew group rings and partial fixed rings. We study a Morita context associated to these rings, α-partial Galois extensions and related aspects. Finally, we establish conditions to obtain a Morita equivalence between Rα and R⋆αG.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154630
citation_txt A Morita context related to finite groups acting partially on a ring/ J.A. Guzman, J. Lazzarin // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 3. — С. 49–60. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT guzmanja amoritacontextrelatedtofinitegroupsactingpartiallyonaring
AT lazzarinj amoritacontextrelatedtofinitegroupsactingpartiallyonaring
AT guzmanja moritacontextrelatedtofinitegroupsactingpartiallyonaring
AT lazzarinj moritacontextrelatedtofinitegroupsactingpartiallyonaring
first_indexed 2025-12-02T07:36:04Z
last_indexed 2025-12-02T07:36:04Z
_version_ 1850861900467798016