Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells
Aim. To study the dynamics of lipophilic content release from nanocarriers of different types, organic molecular ensembles and inorganic nanoparticles (NPs) in vitro experiments. Methods. Two-channel ratiometric fluorescence detection method based on Forster Resonance Energy Transfer, fluorescent sp...
Gespeichert in:
| Datum: | 2014 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут молекулярної біології і генетики НАН України
2014
|
| Schriftenreihe: | Вiopolymers and Cell |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154641 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells / T.N. Tkacheva, S.L. Yefimova, V.K. Klochkov, A.V. Sorokin, Yu.V. Malyukin // Вiopolymers and Cell. — 2014. — Т. 30, № 4. — С. 314-320. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154641 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1546412025-02-23T18:29:28Z Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells Динаміка вилучення барвників з наноконтейнерів різного типу в модельних мембранах і живих клітинах Динамика высвобождения красителей из наноконтейнеров различного типа в модельных мембранах и живых клетках Tkacheva, T.N. Yefimova, S.L. Klochkov, V.K. Sorokin, A.V. Malyukin, Yu.V. Bioorganic Chemistry Aim. To study the dynamics of lipophilic content release from nanocarriers of different types, organic molecular ensembles and inorganic nanoparticles (NPs) in vitro experiments. Methods. Two-channel ratiometric fluorescence detection method based on Forster Resonance Energy Transfer, fluorescent spectroscopy and micro-spectroscopy have been used. Results. It has been found that the profiles of lipophilic dyes release from organic nanocarriers (PC liposomes and SDS micelles) and inorganic ones (GdYVO₄:Eu³⁺ and CeO₂ NPs) are well fitted by the first-order reaction kinetics in both model cell membranes and living cells (rat hepatocytes). The dye release constants (K) and half-lives (t1/2) were analyzed. Conclusions. GdYVO₄:Eu³⁺ and CeO₂ NPs have been shown to provide faster lipophilic content release in model cell membranes as compared to PC liposomes. Negatively charged or lipophilic compounds added into nanocarriers can decrease the rate of lipophilic dyes release. Specific interaction of GdYVO₄:Eu³⁺ NPs with rat hepatocytes has been observed. Мета. Вивчення динаміки вилучення ліпофильного вмісту з наноконтейнерів різного типу, органічних молекулярних ансамблів і неорганічних наночастинок (НЧ) в експериментах in vitro. Методи. Двоканальний ратіометричний метод реєстрації інтенсивності флуоресценції із застосуванням безвипромінювального перенесення енергії електронного збудження, метод флуоресцентної спектроскопії і мікроспектроскопії. Результати. Вивільнення ліпофильных барвників з органічних (ліпосоми і міцели) і неорганічних (на основі НЧ GdYVO₄:Eu³⁺ і CeO₂) наноконтейнерів може бути описано кінетичною реакцією першого порядку як у модельних клітинних мембранах, так і в живих клітинах. Отримано константи швидкості вивільнення (K) і час напіввиведення (t1/2) барвників. Висновки. Наноконтейнери на основі НЧ GdYVO₄:Eu³⁺ і CeO₂ забезпечують швидше вивільнення ліпофильного вмісту в модельних клітинних мембранах порівняно з ліпосомами. Проте додавання негативно заряджених або ліпофильних компонент у систему знижує швидкість вивільнення барвників. Виявлено специфічність взаємодії НЧ GdYVO₄:Eu³⁺ з гепатоцитами щурів. Цель. Изучение динамики высвобождения липофильного содержимого из наноконтейнеров различного типа, органических молекулярных ансамблей и неорганический наночастиц (НЧ) в экспериментах in vitro. Методы. Использовали двуканальный ратиометрический метод регистрации интенсивности флуоресценции на основе безызлучательного переноса энергии электронного возбуждения, а также метод флуоресцентной спектроскопии и микро- спектроскопии. Результаты. Выход липофильных красителей из органических (липосомы и мицеллы) и неорганических (на основе НЧ GdYVO₄:Eu³⁺ и CeO₂) наноконтейнеров может быть описан кинетической реакцией первого порядка как в модельных клеточных мембранах, так и в живых клетках. Получены константы скорости высвобождения (K) и время полувыведения (t1/2) красителей. Выводы. Наноконтейнеры на основе НЧ GdYVO₄:Eu³⁺ и CeO₂ обеспечивают более быстрое высвобождение липофильного содержимого в модельных клеточных мембранах по сравнению с липосомами. Однако добавление отрицательно заряженных или липофильных компонент в систему снижаает скорость высвобождения красителей. Обнаружена специфичность взаимодействия НЧ GdYVO₄:Eu³⁺ с гепатоцитами крыс. 2014 Article Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells / T.N. Tkacheva, S.L. Yefimova, V.K. Klochkov, A.V. Sorokin, Yu.V. Malyukin // Вiopolymers and Cell. — 2014. — Т. 30, № 4. — С. 314-320. — Бібліогр.: 24 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.0008A7 https://nasplib.isofts.kiev.ua/handle/123456789/154641 [547.97:577.115.7-022.532]:576.314 en Вiopolymers and Cell application/pdf Інститут молекулярної біології і генетики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Bioorganic Chemistry Bioorganic Chemistry |
| spellingShingle |
Bioorganic Chemistry Bioorganic Chemistry Tkacheva, T.N. Yefimova, S.L. Klochkov, V.K. Sorokin, A.V. Malyukin, Yu.V. Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells Вiopolymers and Cell |
| description |
Aim. To study the dynamics of lipophilic content release from nanocarriers of different types, organic molecular ensembles and inorganic nanoparticles (NPs) in vitro experiments. Methods. Two-channel ratiometric fluorescence detection method based on Forster Resonance Energy Transfer, fluorescent spectroscopy and micro-spectroscopy have been used. Results. It has been found that the profiles of lipophilic dyes release from organic nanocarriers (PC liposomes and SDS micelles) and inorganic ones (GdYVO₄:Eu³⁺ and CeO₂ NPs) are well fitted by the first-order reaction kinetics in both model cell membranes and living cells (rat hepatocytes). The dye release constants (K) and half-lives (t1/2) were analyzed. Conclusions. GdYVO₄:Eu³⁺ and CeO₂ NPs have been shown to provide faster lipophilic content release in model cell membranes as compared to PC liposomes. Negatively charged or lipophilic compounds added into nanocarriers can decrease the rate of lipophilic dyes release. Specific interaction of GdYVO₄:Eu³⁺ NPs with rat hepatocytes has been observed. |
| format |
Article |
| author |
Tkacheva, T.N. Yefimova, S.L. Klochkov, V.K. Sorokin, A.V. Malyukin, Yu.V. |
| author_facet |
Tkacheva, T.N. Yefimova, S.L. Klochkov, V.K. Sorokin, A.V. Malyukin, Yu.V. |
| author_sort |
Tkacheva, T.N. |
| title |
Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells |
| title_short |
Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells |
| title_full |
Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells |
| title_fullStr |
Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells |
| title_full_unstemmed |
Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells |
| title_sort |
dynamics of dye release from nanocarriers of different types in model cell membranes and living cells |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| publishDate |
2014 |
| topic_facet |
Bioorganic Chemistry |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154641 |
| citation_txt |
Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells / T.N. Tkacheva, S.L. Yefimova, V.K. Klochkov, A.V. Sorokin, Yu.V. Malyukin // Вiopolymers and Cell. — 2014. — Т. 30, № 4. — С. 314-320. — Бібліогр.: 24 назв. — англ. |
| series |
Вiopolymers and Cell |
| work_keys_str_mv |
AT tkachevatn dynamicsofdyereleasefromnanocarriersofdifferenttypesinmodelcellmembranesandlivingcells AT yefimovasl dynamicsofdyereleasefromnanocarriersofdifferenttypesinmodelcellmembranesandlivingcells AT klochkovvk dynamicsofdyereleasefromnanocarriersofdifferenttypesinmodelcellmembranesandlivingcells AT sorokinav dynamicsofdyereleasefromnanocarriersofdifferenttypesinmodelcellmembranesandlivingcells AT malyukinyuv dynamicsofdyereleasefromnanocarriersofdifferenttypesinmodelcellmembranesandlivingcells AT tkachevatn dinamíkavilučennâbarvnikívznanokontejnerívríznogotipuvmodelʹnihmembranahíživihklítinah AT yefimovasl dinamíkavilučennâbarvnikívznanokontejnerívríznogotipuvmodelʹnihmembranahíživihklítinah AT klochkovvk dinamíkavilučennâbarvnikívznanokontejnerívríznogotipuvmodelʹnihmembranahíživihklítinah AT sorokinav dinamíkavilučennâbarvnikívznanokontejnerívríznogotipuvmodelʹnihmembranahíživihklítinah AT malyukinyuv dinamíkavilučennâbarvnikívznanokontejnerívríznogotipuvmodelʹnihmembranahíživihklítinah AT tkachevatn dinamikavysvoboždeniâkrasitelejiznanokontejnerovrazličnogotipavmodelʹnyhmembranahiživyhkletkah AT yefimovasl dinamikavysvoboždeniâkrasitelejiznanokontejnerovrazličnogotipavmodelʹnyhmembranahiživyhkletkah AT klochkovvk dinamikavysvoboždeniâkrasitelejiznanokontejnerovrazličnogotipavmodelʹnyhmembranahiživyhkletkah AT sorokinav dinamikavysvoboždeniâkrasitelejiznanokontejnerovrazličnogotipavmodelʹnyhmembranahiživyhkletkah AT malyukinyuv dinamikavysvoboždeniâkrasitelejiznanokontejnerovrazličnogotipavmodelʹnyhmembranahiživyhkletkah |
| first_indexed |
2025-11-24T10:29:52Z |
| last_indexed |
2025-11-24T10:29:52Z |
| _version_ |
1849667294643355648 |
| fulltext |
BIOORGANIC CHEMISTRY
UDC [547.97:577.115.7-022.532]:576.314
Dynamics of dye release from nanocarriers of different
types in model cell membranes and living cells
T. N. Tkacheva, S .L. Yefimova, V. K. Klochkov, A. V. Sorokin, Yu. V. Malyukin
Institute for Scintillation Materials NAS of Ukraine
60, Lenin Ave., Kharkiv, Ukraine, 61001
ephimova@isma.kharkov.ua
Aim. To study the dynamics of lipophilic content release from nanocarriers of different types, organic molecular
ensembles and inorganic nanoparticles (NPs) in vitro experiments. Methods. Two-channel ratiometric fluores-
cence detection method based on Forster Resonance Energy Transfer, fluorescent spectroscopy and micro-
spectroscopy have been used. Results. It has been found that the profiles of lipophilic dyes release from organic
nanocarriers (PC liposomes and SDS micelles) and inorganic ones (GdYVO
4
:Eu
3+
and CeO
2
NPs) are well fitted
by the first-order reaction kinetics in both model cell membranes and living cells (rat hepatocytes). The dye
release constants (K) and half-lives (t
1/2
) were analyzed. Conclusions. GdYVO
4
:Eu
3+
and CeO
2
NPs have been
shown to provide faster lipophilic content release in model cell membranes as compared to PC liposomes. Ne-
gatively charged or lipophilic compounds added into nanocarriers can decrease the rate of lipophilic dyes re-
lease. Specific interaction of GdYVO
4
:Eu
3+
NPs with rat hepatocytes has been observed.
Keywords: nanocarries, Forster Resonance Energy Transfer, dye release, model cell membranes, living cells.
Introduction. Nano-drugs (NDs) are the important pro-
ducts of rapidly developing nanotechnologies in bio-
logy and medicine field [1–4]. NDs are composed of a
nano-scale matrix (carriers, platform) and therapeutic
or any other active compounds (diagnostics or imaging
agents) encapsulated in a carrier or adsorbed on its sur-
face [2, 4, 5]. A nanocarrier serves as a delivery system
providing targeted drug delivery (passive and active tar-
geting) to the pathological area and their controlled re-
lease that increases drastically the efficiency of therapy
[1–5]. Such nanomaterials have unique physicochemi-
cal properties, such as ultra small size, large surface area
to mass ratio, and high reactivity, which can be used to
overcome some of the limitations found in traditional
therapeutic and diagnostic agents [6]. Today, a variety
of nanocarriers such as polymeric micelles, liposomal
vesicles, dendrimeres, inorganic nanoparticles, etc. ha-
ve been attempted as drug-delivery systems for treat-
ment of cancer, some infectious, inherited and incurab-
le diseases [1–6].
Recently we have reported the method of GdYVO4:Eu3+
nanoparticles (NPs) synthesis with controlled size and
shape [7]. NPs can be obtained as aqueous colloidal
solutions which are transparent in incident light and
brightly luminescent under the laser excitation with an
appropriate wavelength. It was also found that cationic
dye molecules interact with negatively charged NPs
that causes neutralization of NPs surface charge and pro-
vokes the formation of hybrid dye/NPs complexes [8,
9]. Using microspectroscopic technique, we found that
spherical GdYVO4:Eu3+ NPs with the average diameter
of 2 nm accumulate in rat hepatocytes nuclei in situ and
in isolated nuclei of the cells and exhibit tropism to nuc-
lear structural components [10]. Our findings are very
promising for biomedical applications of orthovanadate
NPs as a nano-scale platform for new anti-cancer NDs.
In spite of amazing promises of NDs, many challen-
ges remain in their clinical applications. One of the ob-
stacles is a requirement of a better understanding of the
interactions of nanomaterials with biological systems,
which will facilitate the engineering of their properties
specific to biomedical applications.
314
ISSN 0233–7657. Biopolymers and Cell. 2014. Vol. 30. N 4. P. 314–320 doi: http://dx.doi.org/10.7124/bc.0008A7
� Institute of Molecular Biology and Genetics, NAS of Ukraine, 2014
Another important aspect in the NDs development
is controlling the rate of active compound release from
the carrier [11].
In the present paper, we report in vitro study of the
dyes/GdYVO4:Eu3+ NPs complexes interaction with mo-
del membranes and living cells (rat hepatocytes) and
the dye release kinetics using fluorescent spectroscopy
and microspectroscopic techniques. For comparison,
we used other inorganic NPs (CeO2 NPs) and organic
ones (liposome vesicles, surfactant micelles). The dyes
used mimic hydrophobic drug molecules. To study the
dye release in dynamics, we used a pair of dyes, so-cal-
led FRET-pair (Forster Resonance Energy Transfer
[12]), DiO and DiI dye molecules, encapsulated in or ad-
sorbed on nanocarriers and a �-ratiometry method of
fluorescence detection based on fluorescence recording
at two wavelengths [13–15].
Materials and methods. Chemicals. Fluorescent
hydrophobic dyes 3,3'-dioctadecyloxacarbocyanine
perchlorate (DiO), 1,1'-dioctadecyl-3,3,3',3'-tetrame
thylindocarbocyanine perchlorate (DiI) (Fig. 1), L-�-
phosphatidylcholine (PC) from egg yolk and sodium
dodecylsulfate (SDS) were purchased from «Sigma-Al-
drich» (USA) and used without purification. Chloro-
form («Sigma-Aldrich») used to prepare lipid and dye
stock solutions was a spectroscopic grade product.
DMSO («Sigma-Aldrich») was also of spectroscopic
grade. To prepare aqueous solutions of the dyes with na-
nocarriers, double distilled water was used.
NPs synthesis. The aqueous colloidal solutions of
GdYVO4:Eu3+ and CeO2 were synthesized according to
the method reported earlier [7, 9]. NPs were characteri-
zed using Transmission Electron Microscopy (TEM-
125K electron microscope, «Selmi», Ukraine). Zeta po-
tentials were measured using a ZetaPALS/BI-MAS ana-
lyzer («Brookhaven Instruments Corp.», USA) opera-
ted in phase analysis light scattering mode. In the pre-
sent work the spherical GdYVO4:Eu3+ (d = 2 nm; � po-
tential –20.94 ± 1.27 mV) and CeO2 (d = 2 nm; � po-
tential –24 ± 1.07 mV) NPs were used.
Preparation of SDS micelles with DiO and DiI dyes.
The concentration of the surfactant in the solutions was
1 �10–2 M. The concentration of the dyes in the water-mi-
celles solutions was 2 � 10–5 M. First, stock solution of
each dye in chloroform of 1 �10–3 M concentration was
prepared. To prepare the solutions for measurements,
3 mg of SDS were mixed in a flask with the required
amount of the dye stock solution. After chloroform eva-
poration the required amount of double distilled water
was added. The solutions were heated to 80 oC to ensu-
re the uniform distribution of the components and then
cooled to room temperature.
Preparation of lipid vesicles with DiO and DiI dyes.
Unilamellar PC lipid vesicles containing DiO and DiI dy-
es were prepared by the extrusion method [16]. Appro-
priate amount of PC (40 mg/ml) and dyes (10–3 M) stock
solutions in chloroform was mixed in a flask and dried
until complete chloroform evaporation. The thin lipid-
dyes film was then hydrated with 2 ml of double distilled
water. Final concentration of PC was 1 �10–3 M. The obtai-
ned lipid-dyes suspension was finally extruded through
100 nm pore size polycarbonate filter using a mini-extru-
der («Avanti Polar Lipids, Inc.», USA). The concentra-
tion of each dye in liposomal suspension was 2 �10–5 M.
If PC liposomes contain SDS, 10 % of SDS (with
respect to PC weight) were added at the stage of lipid-
dyes film formation.
Preparation of dyes/NPs complexes. Water colloi-
dal solutions of GdYVO4:Eu3+ or CeO2 (0.5 g/l) NPs
and DiO and DiI dyes (3 �10–3 M) stock solutions in iso-
propyl were mixed in a flask. The mixture was careful-
ly stirred using a rotary evaporator (Rotavapor R-3,
«Buchi», Switzerland) during 1 h to complete evapora-
tion of isopropyl. The final concentration of each dye
was 2 � 10–5 M.
If the complexes contain cholesterol, its solution in
isopropyl (0.1 M) was added at the stage of mixture
preparation.
Cell labeling procedure. Isolated rat hepatocytes
from male Wistar rats were obtained by the method des-
315
DYNAMICS OF DYE RELEASE FROM NANOCARRIERS OF DIFFERENT TYPES
N
+
O
N
O
ClO
4
N
+ N
CH
3 CH
3 CH
3
CH
3
ClO4
C18H37
C18H37
-
C18H37
C18H37
-
A
B
Fig. 1. Structural formulas of the dyes: A – DiO; B – DiI
cribed by Wang after dissociation of the liver with 2 mM
EDTA [17]. Cell viability was assessed via the trypan
blue exclusion test. The cell viability 95 % and yield of
1.5 � 107 cells g–1 are in good agreement with those pre-
viously described [17]. The cell pellets (50 ml 107 cells/
ml) were incubated with suspension of dye-loaded lipo-
somes or dyes/NPs complexes (50 ml) in 1 ml of Eagle’s
medium with 10 % fetal calf serum at 37 °C for requi-
red time intervals. Afterwards the non-bound liposomes
or NPs were removed by centrifugation at 500 g and wa-
shing-out by adding HBSS (HEPES buffered saline so-
lution) buffer (pH 7.4) with 0.1 % BSA.
Cell imaging, spectroscopy and microspectroscopy.
Fluorescence spectra of the solutions were taken with a
spectrofluorimeter Lumina («Thermo Scientific», USA).
Cell visualization was carried out using fluorescent mic-
roscope Olympus IX 71 supplied with a digital camera
Olympus C-5060 with the magnification of �1000 in
the conditions of oil immersion. Fluorescence was exci-
ted by a xenon lamp 75 W using BP 460–490 and BP
510–550 nm filters to excite DiO and DiI, respectively.
To study FRET, BP 460–490 filter was used. Micro-
spectroscopy in the area of interest was carried out using
spectral detector USB 4000 (Ocean Optics) connected
with Olympus IX71.
Results and discussion. Nanocarriers interaction
with model cell membranes. Several research groups,
including ours, use the FRET based methods to in vivo
and in vitro study on the release of lipophilic agents
from polymeric micelles [18, 19], kinetic and dynamic
stability of polymeric micelles [20], liposomal vesicles
interaction with cells of different types in dynamics
[15]. A FRET pair, DiO as the energy donor and DiI as
the energy acceptor, was used for these purposes. When
both FRET molecules were encapsulated in one nano-
carrier (liposome, micelle, nanoparticle), and excited at
the appropriate wavelength, the energy transfer occur-
red due to the close proximity between the dyes: excita-
tion at 460 nm (donor excitation) resulted in a very
strong emission at 565 nm (acceptor emission), Fig. 2,
curve 1. When nanocarriers are broken down for any
reason (for instance, in case of organic solvent DMF ad-
dition), the donor and acceptor molecules are released
and diffuse apart, eliminating the energy transfer [12,
14, 15]. In such a case, a redistribution of the donor
(�max = 501 nm) and acceptor (�max = 565 nm) peaks was
observed (Fig. 2, curves 2, 3). The�-ratiometry method
is based on the analysis of the FRET ratio IDiI/(IDiO + IDiI)
where IDiI and IDiO are the fluorescence intensities mea-
sured at DiI and DiO maxima, respectively [13].
At the first stage of our research, we studied the ki-
netics of lipophilic dyes release under the nanocarriers
interaction with the model cell membranes. A concent-
rated suspension of PC liposomes (1 �10–2 M), which do
not contain dye molecules, was used as a model system
of cell membranes [21]. Colloidal solutions of nanocar-
riers (PC liposomes, SDS micelles, GdYVO4:Eu3+ or
CeO2 NPs) containing FRET-dyes were mixed with the
concentrated suspension of liposomes (1:1 ratio) and
kept at room temperature during the desired time inter-
vals (from 30 min up to 170 h). Schematic representa-
tion of the experiment is presented on Fig. 3. A decrea-
se of FRET ratio was observed over time for all nanocar-
ries under study, but with different efficiency (Fig. 4).
At the same time, in the solutions of nanocarries diluted
at the ratio 1:1 with double distilled water without li-
pids we did not observe any redistribution in time of the
donor and acceptor fluorescence. These results indicate
the nanocarriers interaction with the lipid bilayers of
model membranes and lipophilic dyes release as well as
dilution in lipid phase that leads to an increase in the do-
nor-acceptor distance and, consequently, the FRET ratio
decrease (Fig. 4).
The SDS micelles exhibit high stability in liposo-
mal suspension. The FRET ratio IDiI/(IDiO + IDiI) chan-
ged very slowly (Fig. 4, curve 1). Curve 1 reached a pla-
teau only after 120 h. Meanwhile, the FRET ratio chan-
316
TKACHEVA T. N. ET AL.
500 550 600 650 700
F
lu
o
re
sc
e
n
c
e
in
te
n
si
ty
,
a
rb
.
u
n
.
Wavelength, nm
0
200
400
600
800
1000
1
2
3
Fig. 2. Redistribution of the donor and acceptor fluorescence relative
intensities in solutions containing dyes-loaded PC liposomes and dif-
ferent amounts of DMF: 1 – without DMF; 2 – 30 % of DMF; 3 – 80 %
of DMF; �
exc
= 460 nm
ged from 0.98 to 0.82 that indicates a very low effici-
ency of hydrophobic cationic dyes release from the ani-
onic nanocarriers into the lipid phase.
The process of redistribution of the dyes between na-
nocarriers and the lipid phase can be described by first-
order reaction kinetics in the following form [20, 22]:
I
I I
I
I I
eDiI
DiO DiI t
DiI
DiO DiI
�
��
�
�� �
�
��
�
��
( ) ( )0
� Kt , (1)
where K – is the release rate constant (the dye leakage
coefficient).
First-order reaction kinetics can be assumed when
the reaction rate depends on the concentration of only
one reactor, in our case, on the lipid phase concent-
ration. A nonlinear fit (eq. 1) of the FRET ratio changes
was generated by the method of last-squares and allows
K = 0.008 h–1 to be obtained (Table 1).
For first-order reactions one can also use the dye
release half-life (in our case, time for the initial FRET
ratio to be reduced by 1/2), which can be obtained as
[20]:
t
K
1 2
2
/
ln
.� (2)
For SDS micelles, the dye release half-life was esti-
mated to be 86 h that is rather large value indicating a low
efficiency of the dye molecules release from SDS micel-
les. We suggest that this fact can be explained by the key
role of electrostatic interactions, which hold cationic dy-
es in oppositely charged micelles and prevent their rele-
ase into the lipid bilayers of the model cell membranes.
For other nanocarriers under study the dye release
process was much faster (Table 1). The FRET ratio chan-
ged within about 5 h and then all the curves reached a
plateau (Fig. 4). For PC liposome nanocarriers the dye
leakage coefficient was obtained to be 0.82 h–1, while
t1/2 is 0.85 h (Fig. 4, curve 3, Table 1). To test a role of
electrostatic interactions, we added 10 % of SDS in the
lipid bilayers of liposomal containers that provided a ne-
gative charge of liposome without changing its proper-
ties. As seen in Table 1, t1/2, becomes about three times
higher that confirms the role of electrostatic interactions
in the dye–to–nanocarrier binding.
317
DYNAMICS OF DYE RELEASE FROM NANOCARRIERS OF DIFFERENT TYPES
0 20 40 60
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
Time, hours
6
5
4
3
2
1
I D
iI
/(
I D
iO
+
I D
iI
)
Time, h
Fig. 4. Time traces of FRET ratio I
DiI
/(I
DiO
+ I
DiI
) : 1 – SDS micelles; 2 –
liposomes + 10 % of SDS; 3 – liposomes; 4 – GdYVO
4
:Eu
3+
; 5 –
GdYVO
4
:Eu
3+
+ cholesterol; 6 – CeO
2
Stable container (No dye release)
Green emission. No red emission
No green emission. Red emission
Mixing
Nanocarrier - DIO + DII
DIO (FRET donor)
DII (FRET acceptor)
No green emission. Red emission
Model cell membrane
(“empty” liposome vesicle)
h�`
h�
h� h�`
h�
h�``
Leaky container (Dye release)
FRET
Fig. 3. Schematic represen-
tation of the experiment
In case of GdYVO4:Eu3+ and CeO2 NPs, a very fast
release of dyes from the dyes/NP complexes and their
transition into the lipid phase were observed (Fig. 4,
curves 4, 6). The K values are large, whereas the dye
release half-lives are less than 30 min (Table 1). Such
effects could be explained by the appearance of lipo-
philic gradient and fast transition of lipophilic dyes DiO
and DiI into the lipophilic environment. If nanocarriers
contain encapsulated cholesterol, the process of dye re-
lease slowed down by almost in three times by reducing
the lipophilic gradient in such a solution (Table 1).
Nanocarriers interaction with living cells in vitro.To
test nanocarriers in the experiments with living cells,
freshly isolated rat hepatocytes were used. Fig. 5, A,
shows the fluorescent images of rat hepatocytes ob-
tained at different time intervals of cell incubation with
the dyes/CeO2 complexes. A gradual increase in cell
brightness over time was observed that points to the dy-
es accumulation in a cell membrane. At the same time,
we observed a decrease in the FRET ratio, IDiI/(IDiO +
+ IDiI), over time (Fig. 6, curve 3) from 0.7 to 0.2 that
points to an increase of the distance between the donor
and acceptor molecules due to their diffusion in the li-
pid bilayers of cell membranes. Similarly to the model
cell membranes, the process of the donor and acceptor
fluorescence redistribution took about five hours and
then curve 3 reached the plateau (Fig. 6). The dye relea-
se kinetic parameters are K = 3.1 h–1 and t1/2 = 0.22 h
that agrees well with those obtained for the model cell
membranes (Table 2).
Features of the GdYVO4:Eu3+ nanocarriers interac-
tion with the living cells differs from that for the CeO2
nanocarriers. As shown in Fig. 5, b, at the short time in-
cubation, 10 min and 1 h, the dyes are located mainly
318
TKACHEVA T. N. ET AL.
Type of nanocarriers K, h–1 t1/2, h
SDS micelles 0.008 86
Liposomes 0.82 0.85
Liposomes + 10 % SDS 0.29 2.4
GdYVO4:Eu
3+
1.96 0.36
GdYVO4:Eu
3+
+ cholesterol 0.75 0.93
CeO2 2.86 0.24
Table 1
Dye release constant (K) and half-life (t1/2) in model cell membranes
Type of nanocarriers K, h–1 t1/2, h
CeO2 3.1 0.22
GdYVO4:Eu
3+
0.54 1.28
Liposomes 0.9 0.77
Table 2
Dye release constant (K) and half-life (t1/2) in rat hepatocytes
Autofluorescence 10 min 1 h 3 h 24 h
A
B
C
Fig. 5. Fluorescent images
of rat hepatocytes taken at
different times of cell in-
cubation with dyes/CeO
2
(A), dyes/GdYVO
4
:Eu
3+
(B)
complexes and dyes-loaded
liposomes (C). Excitation
with BP 460–490 filter
on the cell membrane surface (yellow spots). At the sa-
me time, even after 24 h incubation of the cells with the
dyes/GdYVO4:Eu3+ complexes, the FRET ratios chan-
ged not sufficiently (from 0.7 to 0.5) and the yellow
spots were still observed. The dye release half-life was
almost six times higher than in case of the CeO2 nano-
carriers (Table 2) and the obtained kinetic parameters K
and t1/2 also differed from those obtained in the model
cell membranes (Table 1). We can ascribe these facts to
the specificity of the GdYVO4:Eu3+ NPs interaction
with living cells. As it was mentioned above, spherical
GdYVO4:Eu3+ NPs (d = 2 nm) exhibit the penetration
into cells and accumulation in cell organelles [10]. We
suppose the yellow spots to be the dyes/GdYVO4:Eu3+
complexes accumulated either on a cell membrane sur-
face or inside the cells similarly to the dyes accumula-
tion in the cells endocytosis vesicles after their interna-
lization revealed by Chen and co-workers [18, 19].
For comparison, the kinetic parameters of dye-loa-
ded PC liposomes interaction with rat hepatocytes were
also analyzed. The fluorescent images of cells taken in
different time periods show a gradual increase in cell
brightness over time, no spots on the cell membranes
were observed that points to the effective dye release
from the liposomes (Fig. 5, c). The FRET ratio changed
and the kinetic parameters K and t1/2 were similar to
those obtained for the model cell membranes (Fig. 6, c,
Table 2).
Controlled release of drugs and other bioactive agents
is a key point in drug formulation pharmacokinetic stu-
dy and attract many researches [11, 21, 23]. Controlled
drug delivery applications include both a one-time or
sustained targeted delivery [21–24]. Controlled-release
systems are designed to enhance drug therapy due to
reducing the amount of drug necessary to cause the sa-
me therapeutic effect in patient. Over the years of cont-
rolled release research, different systems have been ex-
plored to get predesigned release profile [11, 21–24]. In
certain drug administration strategies, a fast release of
drug immediately upon placement in the release me-
dium is required [11]. We have shown that NPs as a plat-
form for drug delivering can provide fast lipophilic
content release from the nanocarrier, Table 1. How-
ever, specificity of GdYVO4:Eu3+ NPs interaction with
rat hepatocytes affect the kinetics of this process in-
creasing the value (Table 2). Meanwhile, the rate of li-
pophilic content release can be controlled by decrea-
sing lipophilic gradient and providing Coulombic inter-
actions between the nanocarrier and the encapsulated
substance.
Conclusions. The FRET-based method was used to
study the nanocarriers interaction with the model cell
membranes and living cells in dynamic experiments in
vitro. The dye release constants (K) and half-lives (t1/2) we-
re analyzed for different nanocarriers (SDS micelles, PC
liposomes, GdYVO4:Eu3+ and CeO2 NPs). GdYVO4:Eu3+
and CeO2 NPs were shown to provide a faster lipophi-
lic dyes release in the model cell membranes as com-
pared to PC liposomes, the dye release half-life t1/2 is
less than 30 min, that can be explained by the appea-
rance of a lipophilic gradient. The negatively charged
or lipophilic compounds can decrease the rate of lipo-
philic agents release from nanocarriers i. e. allow this
process to be controlled. Our experiments confirm the
specificity of the GdYVO4:Eu3+ NPs interaction with li-
ving cells. We suppose the intracellular uptake of the
dyes/GdYVO4:Eu3+ NPs complex with a slower dye re-
lease, whereas for the dyes/CeO2 complex the dye re-
lease pattern is similar to that in case of the model cell
membranes.
Äèíàì³êà âèëó÷åííÿ áàðâíèê³â ç íàíîêîíòåéíåð³â ð³çíîãî òèïó
â ìîäåëüíèõ ìåìáðàíàõ ³ æèâèõ êë³òèíàõ
Ò. Ì. Òêà÷îâà, Ñ. Ë. ªô³ìîâà, Â. Ê. Êëî÷êîâ, À. Â. Ñîðîê³í,
Þ. Â. Ìàëþê³í
Ðåçþìå
Ìåòà. Âèâ÷åííÿ äèíàì³êè âèëó÷åííÿ ë³ïîôèëüíîãî âì³ñòó ç íàíî-
êîíòåéíåð³â ð³çíîãî òèïó, îðãàí³÷íèõ ìîëåêóëÿðíèõ àíñàìáë³â ³
íåîðãàí³÷íèõ íàíî÷àñòèíîê (Í×) â åêñïåðèìåíòàõ in vitro. Ìåòî-
319
DYNAMICS OF DYE RELEASE FROM NANOCARRIERS OF DIFFERENT TYPES
0 5 10 15 20 25
0,2
0,3
0,4
0,5
0,6
0,7
0,8
3
2
1
Time, hours
I D
iI
/(
I D
iO
+
D
iI
)
I D
iI
/(
I D
iO
+
I D
iI
)
Time, h
Fig. 6. Time traces of FRET ratio I
DiI
/(I
DiO
+ I
DiI
) in red hepatocytes: 1 –
GdYVO
4
:Eu
3+
; 2 – PC liposomes; 3 – CeO
2
äè. Äâîêàíàëüíèé ðàò³îìåòðè÷íèé ìåòîä ðåºñòðàö³¿ ³íòåíñèâ-
íîñò³ ôëóîðåñöåíö³¿ ³ç çàñòîñóâàííÿì áåçâèïðîì³íþâàëüíîãî ïå-
ðåíåñåííÿ åíåð㳿 åëåêòðîííîãî çáóäæåííÿ, ìåòîä ôëóîðåñöåíò-
íî¿ ñïåêòðîñêîﳿ ³ ì³êðîñïåêòðîñêîﳿ. Ðåçóëüòàòè. Âèâ³ëüíåí-
íÿ ë³ïîôèëüíûõ áàðâíèê³â ç îðãàí³÷íèõ (ë³ïîñîìè ³ ì³öåëè) ³ íåîð-
ãàí³÷íèõ (íà îñíîâ³ Í× GdYVO4:Eu
3+
³ CeO2) íàíîêîíòåéíåð³â ìî-
æå áóòè îïèñàíî ê³íåòè÷íîþ ðåàêö³ºþ ïåðøîãî ïîðÿäêó ÿê ó ìî-
äåëüíèõ êë³òèííèõ ìåìáðàíàõ, òàê ³ â æèâèõ êë³òèíàõ. Îòðèìàíî
êîíñòàíòè øâèäêîñò³ âèâ³ëüíåííÿ (K) ³ ÷àñ íàï³ââèâåäåííÿ (t1/2)
áàðâíèê³â. Âèñíîâêè. Íàíîêîíòåéíåðè íà îñíîâ³ Í× GdYVO4:Eu
3+
³
CeO2 çàáåçïå÷óþòü øâèäøå âèâ³ëüíåííÿ ë³ïîôèëüíîãî âì³ñòó â
ìîäåëüíèõ êë³òèííèõ ìåìáðàíàõ ïîð³âíÿíî ç ë³ïîñîìàìè. Ïðîòå
äîäàâàííÿ íåãàòèâíî çàðÿäæåíèõ àáî ë³ïîôèëüíèõ êîìïîíåíò ó
ñèñòåìó çíèæóº øâèäê³ñòü âèâ³ëüíåííÿ áàðâíèê³â. Âèÿâëåíî ñïå-
öèô³÷í³ñòü âçàºìî䳿 Í× GdYVO4:Eu
3+
ç ãåïàòîöèòàìè ùóð³â.
Êëþ÷îâ³ ñëîâà: íàíîêîíòåéíåðè, áåçâèïðîì³íþâàëüíå ïåðå-
íåñåííÿ åíåð㳿, íàíî÷àñòèíêè, âèâ³ëüíåííÿ áàðâíèêà, ìîäåëüí³
êë³òèíí³ ìåìáðàíè, æèâ³ êë³òèíè.
Äèíàìèêà âûñâîáîæäåíèÿ êðàñèòåëåé èç íàíîêîíòåéíåðîâ
ðàçëè÷íîãî òèïà â ìîäåëüíûõ ìåìáðàíàõ è æèâûõ êëåòêàõ
Ò. Í. Òêà÷åâà, Ñ. Ë. Åôèìîâà, Â. Ê. Êëî÷êîâ, À. Â. Ñîðîêèí,
Þ. Â. Ìàëþêèí
Ðåçþìå
Öåëü. Èçó÷åíèå äèíàìèêè âûñâîáîæäåíèÿ ëèïîôèëüíîãî ñîäåð-
æèìîãî èç íàíîêîíòåéíåðîâ ðàçëè÷íîãî òèïà, îðãàíè÷åñêèõ ìîëå-
êóëÿðíûõ àíñàìáëåé è íåîðãàíè÷åñêèé íàíî÷àñòèö (Í×) â ýêñïåðè-
ìåíòàõ in vitro. Ìåòîäû. Èñïîëüçîâàëè äâóêàíàëüíûé ðàòèîìåò-
ðè÷åñêèé ìåòîä ðåãèñòðàöèè èíòåíñèâíîñòè ôëóîðåñöåíöèè íà
îñíîâå áåçûçëó÷àòåëüíîãî ïåðåíîñà ýíåðãèè ýëåêòðîííîãî âîçáóæ-
äåíèÿ, à òàêæå ìåòîä ôëóîðåñöåíòíîé ñïåêòðîñêîïèè è ìèêðî-
ñïåêòðîñêîïèè. Ðåçóëüòàòû. Âûõîä ëèïîôèëüíûõ êðàñèòåëåé èç
îðãàíè÷åñêèõ (ëèïîñîìû è ìèöåëëû) è íåîðãàíè÷åñêèõ (íà îñíîâå
Í× GdYVO4:Eu
3+
è CeO2) íàíîêîíòåéíåðîâ ìîæåò áûòü îïèñàí
êèíåòè÷åñêîé ðåàêöèåé ïåðâîãî ïîðÿäêà êàê â ìîäåëüíûõ êëåòî÷-
íûõ ìåìáðàíàõ, òàê è â æèâûõ êëåòêàõ. Ïîëó÷åíû êîíñòàíòû
ñêîðîñòè âûñâîáîæäåíèÿ (K) è âðåìÿ ïîëóâûâåäåíèÿ (t1/2) êðàñè-
òåëåé. Âûâîäû. Íàíîêîíòåéíåðû íà îñíîâå Í× GdYVO4:Eu
3+
è
CeO2 îáåñïå÷èâàþò áîëåå áûñòðîå âûñâîáîæäåíèå ëèïîôèëüíî-
ãî ñîäåðæèìîãî â ìîäåëüíûõ êëåòî÷íûõ ìåìáðàíàõ ïî ñðàâíåíèþ
ñ ëèïîñîìàìè. Îäíàêî äîáàâëåíèå îòðèöàòåëüíî çàðÿæåííûõ èëè
ëèïîôèëüíûõ êîìïîíåíò â ñèñòåìó ñíèæààåò ñêîðîñòü âûñâî-
áîæäåíèÿ êðàñèòåëåé. Îáíàðóæåíà ñïåöèôè÷íîñòü âçàèìîäåé-
ñòâèÿ Í× GdYVO4:Eu
3+
ñ ãåïàòîöèòàìè êðûñ.
Êëþ÷åâûå ñëîâà: íàíîêîíòåéíåðû, áåçûçëó÷àòåëüíûé ïåðå-
íîñ ýíåðãèè, íàíî÷àñòèöû, âûñâîáîæäåíèå êðàñèòåëÿ, ìîäåëü-
íûå êëåòî÷íûå ìåìáðàíû, æèâûå êëåòêè.
REFERENCES
1. Hunziker P. Nanomedicine: shaping the future of medicine. Eur
J Nanomed. 2012;2(1):4.
2. Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W. Na-
notechnology in therapeutics: a focus on nanoparticles as a drug
delivery system. Nanomedicine (Lond). 2012;7(8):1253–71.
3. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug de-
livery, therapeutics, diagnostics and imaging. Nanomedicine.
2012;8(2):147–66.
4. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer
therapy and imaging. AAPS J. 2007;9(2):E128–47.
5. Liu Y, Niu T-S, Zhang L, Yang J-S. Review on nano-drugs. Natu-
ral Science. 2010; 2(1); 41–8.
6. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad
OC. Nanoparticles in medicine: therapeutic applications and de-
velopments. Clin Pharmacol Ther. 2008;83(5):761–9.
7. Klochkov VK. Coagulation of luminescent colloid nGdVO4:Eu
solutions with inorganic electrolytes. Functional Materials.
2009; 16(2):141–4.
8. Tkacheva TN, Yefimova SL, Klochkov VK, Sorokin AV, Borovoy
IA, Malyukin YuV. Spectroscopic study of inorganic nanopartic-
les nGdYVO4:Eu3+ and organic carbocyanin dyes interactions
in aqueous solutions. Biophysical Bulletin. 2012; 1: 12–9.
9. Klochkov VK, Grigorova AV, Sedyh OO, Malyukin YuV. The in-
fluence of agglomeration of nanoparticles on their superoxide
dismutase-mimetic activity. Colloids Surf A Physicochem Eng
Asp. 2012; 409:176–82.
10. Klochkov V, Kavok N, Grygorova G, Sedyh O, Malyukin Y. Size
and shape influence of luminescent orthovanadate nanoparticles
on their accumulation in nuclear compartments of rat hepato-
cytes. Mater Sci Eng C Mater Biol Appl. 2013;33(5):2708–12.
11. Huang X, Brazel CS. On the importance and mechanisms of
burst release in matrix-controlled drug delivery systems. J Cont-
rol Release. 2001;73(2–3):121–36.
12. Lakowicz JR. Principles of Fluorescence Spectroscopy. New
York etc., Kluwer Acad./Plenum Publ., 1999; 698 p.
13. Demchenko AP. The concept of �-ratiometry in fluorescence
sensing and imaging. J Fluoresc. 2010;20(5):1099–128.
14. Yefimova SL, Lebed AS, Guralchuk GYa, Sorokin AV, Kurilchen-
ko IYu, Kavok NS, Malyukin YuV. Nano-scale liposomal contai-
ner with a «signal system» for substances delivering in living
cells. Biopolym Cell. 2011; 27(1):47–52.
15. Yefimova SL, Kurilchenko IYu., Tkacheva TN, Kavok NS, Todor
IN, Lukianova NYu, Chekhun VF, Malyukin YuV. Microspectro-
scopic study of liposome-to-cell interaction revealed by Forster
resonance energy transfer. J Fluoresc. 2014; 24(2):403–9.
16. Mui B, Chow L, Hope MJ. Extrusion technique to generate lipo-
somes of defined size. Methods Enzymol. 2003;367:3–14.
17. Wang SR, Renaud G, Infante J, Catala D, Infante R. Isolation of
rat hepatocytes with EDTA and their metabolic functions in pri-
mary culture. In Vitro Cell Dev Biol. 1985;21(9):526–30.
18. Chen H, Kim S, He W, Wang H, Low PS, Park K, Cheng JX. Fast
release of lipophilic agents from circulating PEG-PDLLA micel-
les revealed by in vivo forster resonance energy transfer ima-
ging. Langmuir. 2008;24(10):5213–7.
19. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hyd-
rophobic molecules from polymer micelles into cell membranes
revealed by Forster resonance energy transfer imaging. Proc Natl
Acad Sci USA. 2008;105(18):6596–601.
20. Lu J, Owen SC, Shoichet MS. Stability of self-assembled polyme-
ric micelles in serum. Macromolecules. 2011;44(15):6002–
6008.
21. Torchilin V, Weissig V. Liposomes. A practical approach. New
York: Oxford Univ. Press, 2003; 396 p.
22. Pasa G, Mishra US, Tripathy NK, Sahoo SK, Mahapatra AK.
Formulation development and evoluation of didanosine sustai-
ned-release matrix tablets using HPMC K15. Int. J. Pharm.
2012; 2(1):97–100.
23. Fundamentals and applications of controlled release drug deli-
very. Eds J Siepmann, RA Siegel, MJ Rathbone. Advances in
Delivery Science and Technology. Springer, 2012; 19–43.
24. Griffith LG. Polymeric biomaterials. Acta Mater. 2000; 48(1):
263–77.
Received 02.04.14
320
TKACHEVA T. N. ET AL.
|