Groups with many generalized FC-subgroup

Let FC⁰ be the class of all finite groups, and for each non-negative integer n define by induction the group class FCⁿ⁺¹ consisting of all groups G such that the factor group G/CG(xG) has the property FCⁿ for all elements x of G. Clearly, FC¹ is the class of FC-groups and every nilpotent group with...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2009
Автори: Russo, A., Vincenzi, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154643
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Groups with many generalized FC-subgroup / A. Russo, G. Vincenzi // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 158–166. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154643
record_format dspace
spelling Russo, A.
Vincenzi, G.
2019-06-15T17:11:33Z
2019-06-15T17:11:33Z
2009
Groups with many generalized FC-subgroup / A. Russo, G. Vincenzi // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 158–166. — Бібліогр.: 17 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:20F24.
https://nasplib.isofts.kiev.ua/handle/123456789/154643
Let FC⁰ be the class of all finite groups, and for each non-negative integer n define by induction the group class FCⁿ⁺¹ consisting of all groups G such that the factor group G/CG(xG) has the property FCⁿ for all elements x of G. Clearly, FC¹ is the class of FC-groups and every nilpotent group with class at most m belongs to FCm. The class of FCⁿ-groups was introduced in [6]. In this article the structure of groups with finitely many normalizers of non-FCⁿ-subgroups (respectively, the structure of groups whose subgroups either are subnormal with bounded defect or have the property FCⁿ) is investigated.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Groups with many generalized FC-subgroup
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Groups with many generalized FC-subgroup
spellingShingle Groups with many generalized FC-subgroup
Russo, A.
Vincenzi, G.
title_short Groups with many generalized FC-subgroup
title_full Groups with many generalized FC-subgroup
title_fullStr Groups with many generalized FC-subgroup
title_full_unstemmed Groups with many generalized FC-subgroup
title_sort groups with many generalized fc-subgroup
author Russo, A.
Vincenzi, G.
author_facet Russo, A.
Vincenzi, G.
publishDate 2009
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let FC⁰ be the class of all finite groups, and for each non-negative integer n define by induction the group class FCⁿ⁺¹ consisting of all groups G such that the factor group G/CG(xG) has the property FCⁿ for all elements x of G. Clearly, FC¹ is the class of FC-groups and every nilpotent group with class at most m belongs to FCm. The class of FCⁿ-groups was introduced in [6]. In this article the structure of groups with finitely many normalizers of non-FCⁿ-subgroups (respectively, the structure of groups whose subgroups either are subnormal with bounded defect or have the property FCⁿ) is investigated.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154643
citation_txt Groups with many generalized FC-subgroup / A. Russo, G. Vincenzi // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 4. — С. 158–166. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT russoa groupswithmanygeneralizedfcsubgroup
AT vincenzig groupswithmanygeneralizedfcsubgroup
first_indexed 2025-12-02T12:22:37Z
last_indexed 2025-12-02T12:22:37Z
_version_ 1850862507515707392