On modules over group rings of soluble groups with commutative ring of scalars
The author studies an RG-module A such that R is a commutative ring, A/CA(G) is not a Noetherian R-module, CG(A)=1, G is a soluble group. The system of all subgroups H≤G, for which the quotient modules A/CA(H) are not Noetherian R-modules, satisfies the maximal condition. This condition is calle...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2010 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154664 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On modules over group rings of soluble groups with commutative ring of scalars / O.Yu. Dashkova // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 51–63. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154664 |
|---|---|
| record_format |
dspace |
| spelling |
Dashkova, O.Yu. 2019-06-15T17:33:15Z 2019-06-15T17:33:15Z 2010 On modules over group rings of soluble groups with commutative ring of scalars / O.Yu. Dashkova // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 51–63. — Бібліогр.: 8 назв. — англ. 2000 Mathematics Subject Classification:20F16; 20H25. https://nasplib.isofts.kiev.ua/handle/123456789/154664 The author studies an RG-module A such that R is a commutative ring, A/CA(G) is not a Noetherian R-module, CG(A)=1, G is a soluble group. The system of all subgroups H≤G, for which the quotient modules A/CA(H) are not Noetherian R-modules, satisfies the maximal condition. This condition is called the condition max−nnd. The structure of the group G is described. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On modules over group rings of soluble groups with commutative ring of scalars Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On modules over group rings of soluble groups with commutative ring of scalars |
| spellingShingle |
On modules over group rings of soluble groups with commutative ring of scalars Dashkova, O.Yu. |
| title_short |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_full |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_fullStr |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_full_unstemmed |
On modules over group rings of soluble groups with commutative ring of scalars |
| title_sort |
on modules over group rings of soluble groups with commutative ring of scalars |
| author |
Dashkova, O.Yu. |
| author_facet |
Dashkova, O.Yu. |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The author studies an RG-module A such that R is a commutative ring, A/CA(G) is not a Noetherian R-module, CG(A)=1, G is a soluble group. The system of all subgroups H≤G, for which the quotient modules A/CA(H) are not Noetherian R-modules, satisfies the maximal condition. This condition is called the condition max−nnd. The structure of the group G is described.
|
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154664 |
| citation_txt |
On modules over group rings of soluble groups with commutative ring of scalars / O.Yu. Dashkova // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 51–63. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT dashkovaoyu onmodulesovergroupringsofsolublegroupswithcommutativeringofscalars |
| first_indexed |
2025-12-07T18:26:08Z |
| last_indexed |
2025-12-07T18:26:08Z |
| _version_ |
1850875019414994944 |