A tabu search approach to the jump number problem
We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms...
Saved in:
| Date: | 2015 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2015
|
| Series: | Algebra and Discrete Mathematics |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154747 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11]
a lower bound for the jump number of two-dimensional posets.
Moreover, by other techniques we prove
an approximation ratio of n/ log(log(n)) for 2D orders. |
|---|