A tabu search approach to the jump number problem

We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2015
Автори: Krysztowiak, P., Sysło, M.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154747
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154747
record_format dspace
spelling Krysztowiak, P.
Sysło, M.M.
2019-06-15T19:51:52Z
2019-06-15T19:51:52Z
2015
A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ.
1726-3255
2010 MSC:90C27, 90C59.
https://nasplib.isofts.kiev.ua/handle/123456789/154747
We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11] a lower bound for the jump number of two-dimensional posets. Moreover, by other techniques we prove an approximation ratio of n/ log(log(n)) for 2D orders.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A tabu search approach to the jump number problem
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A tabu search approach to the jump number problem
spellingShingle A tabu search approach to the jump number problem
Krysztowiak, P.
Sysło, M.M.
title_short A tabu search approach to the jump number problem
title_full A tabu search approach to the jump number problem
title_fullStr A tabu search approach to the jump number problem
title_full_unstemmed A tabu search approach to the jump number problem
title_sort tabu search approach to the jump number problem
author Krysztowiak, P.
Sysło, M.M.
author_facet Krysztowiak, P.
Sysło, M.M.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11] a lower bound for the jump number of two-dimensional posets. Moreover, by other techniques we prove an approximation ratio of n/ log(log(n)) for 2D orders.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154747
citation_txt A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT krysztowiakp atabusearchapproachtothejumpnumberproblem
AT sysłomm atabusearchapproachtothejumpnumberproblem
AT krysztowiakp tabusearchapproachtothejumpnumberproblem
AT sysłomm tabusearchapproachtothejumpnumberproblem
first_indexed 2025-12-01T12:04:08Z
last_indexed 2025-12-01T12:04:08Z
_version_ 1850860184882118656