A tabu search approach to the jump number problem
We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154747 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154747 |
|---|---|
| record_format |
dspace |
| spelling |
Krysztowiak, P. Sysło, M.M. 2019-06-15T19:51:52Z 2019-06-15T19:51:52Z 2015 A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. 1726-3255 2010 MSC:90C27, 90C59. https://nasplib.isofts.kiev.ua/handle/123456789/154747 We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11] a lower bound for the jump number of two-dimensional posets. Moreover, by other techniques we prove an approximation ratio of n/ log(log(n)) for 2D orders. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics A tabu search approach to the jump number problem Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A tabu search approach to the jump number problem |
| spellingShingle |
A tabu search approach to the jump number problem Krysztowiak, P. Sysło, M.M. |
| title_short |
A tabu search approach to the jump number problem |
| title_full |
A tabu search approach to the jump number problem |
| title_fullStr |
A tabu search approach to the jump number problem |
| title_full_unstemmed |
A tabu search approach to the jump number problem |
| title_sort |
tabu search approach to the jump number problem |
| author |
Krysztowiak, P. Sysło, M.M. |
| author_facet |
Krysztowiak, P. Sysło, M.M. |
| publishDate |
2015 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We consider algorithmics for the jump number problem, which is to generate a linear extension of a given poset, minimizing the number of incomparable adjacent pairs. Since this problem is NP-hard on interval orders and open on two-dimensional posets, approximation algorithms or fast exact algorithms are in demand. In this paper, succeeding from the work of the second named author on semi-strongly greedy linear extensions, we develop a metaheuristic algorithm to approximate the jump number with the tabu search paradigm. To benchmark the proposed procedure, we infer from the previous work of Mitas [Order 8 (1991), 115--132] a new fast exact algorithm for the case of interval orders, and from the results of Ceroi [Order 20 (2003), 1--11]
a lower bound for the jump number of two-dimensional posets.
Moreover, by other techniques we prove
an approximation ratio of n/ log(log(n)) for 2D orders.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154747 |
| citation_txt |
A tabu search approach to the jump number problem / P. Krysztowiak, M.M. Sysło // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 89-114 . — Бібліогр.: 28 назв. — англ. |
| work_keys_str_mv |
AT krysztowiakp atabusearchapproachtothejumpnumberproblem AT sysłomm atabusearchapproachtothejumpnumberproblem AT krysztowiakp tabusearchapproachtothejumpnumberproblem AT sysłomm tabusearchapproachtothejumpnumberproblem |
| first_indexed |
2025-12-01T12:04:08Z |
| last_indexed |
2025-12-01T12:04:08Z |
| _version_ |
1850860184882118656 |