Universal property of skew PBW extensions

In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2015
Hauptverfasser: Acosta, J,.P., Lezama, O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154757
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154757
record_format dspace
spelling Acosta, J,.P.
Lezama, O.
2019-06-15T20:00:54Z
2019-06-15T20:00:54Z
2015
Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ.
1726-3255
2010 MSC:Primary: 16S10, 16S80; Secondary: 16S30, 16S36.
https://nasplib.isofts.kiev.ua/handle/123456789/154757
In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincar\'{e}-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Universal property of skew PBW extensions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Universal property of skew PBW extensions
spellingShingle Universal property of skew PBW extensions
Acosta, J,.P.
Lezama, O.
title_short Universal property of skew PBW extensions
title_full Universal property of skew PBW extensions
title_fullStr Universal property of skew PBW extensions
title_full_unstemmed Universal property of skew PBW extensions
title_sort universal property of skew pbw extensions
author Acosta, J,.P.
Lezama, O.
author_facet Acosta, J,.P.
Lezama, O.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper we prove the universal property of skew $PBW$ extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew $PBW$ extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Artamonov quantum polynomials, diffusion algebras, Manin algebra of quantum matrices, among many others. As a corollary we will give a new short proof of the Poincar\'{e}-Birkhoff-Witt theorem about the bases of enveloping algebras of finite-dimensional Lie algebras.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154757
citation_txt Universal property of skew PBW extensions / J,.P. Acosta, O. Lezama // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 1-12 . — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT acostajp universalpropertyofskewpbwextensions
AT lezamao universalpropertyofskewpbwextensions
first_indexed 2025-12-02T11:38:04Z
last_indexed 2025-12-02T11:38:04Z
_version_ 1850862376863137792