Generalized symmetric rings

In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let R be a ring with identity. A ring R is called central symmetric if for any a, b,c∈R, abc=0 implies bac belongs to the center of R. Since every symmetric ring is central symmetric, we study sufficient c...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2011
Main Authors: Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2011
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/154759
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Generalized symmetric rings / G. Kafkas, B. Ungor, S. Halicioglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 72–84. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154759
record_format dspace
spelling Kafkas, G.
Ungor, B.
Halicioglu, S.
Harmanci, A.
2019-06-15T20:29:23Z
2019-06-15T20:29:23Z
2011
Generalized symmetric rings / G. Kafkas, B. Ungor, S. Halicioglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 72–84. — Бібліогр.: 21 назв. — англ.
1726-3255
2010 Mathematics Subject Classification:13C99, 16D80, 16U80
https://nasplib.isofts.kiev.ua/handle/123456789/154759
In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let R be a ring with identity. A ring R is called central symmetric if for any a, b,c∈R, abc=0 implies bac belongs to the center of R. Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric. We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring R[x] is central symmetric if and only if the Laurent polynomial ring R[x,x−1] is central symmetric. Among others, it is shown that for a right principally projective ring R, R is central symmetric if and only if R[x]/(xn) is central Armendariz, where n≥2 is a natural number and (xn) is the ideal generated by xn
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Generalized symmetric rings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Generalized symmetric rings
spellingShingle Generalized symmetric rings
Kafkas, G.
Ungor, B.
Halicioglu, S.
Harmanci, A.
title_short Generalized symmetric rings
title_full Generalized symmetric rings
title_fullStr Generalized symmetric rings
title_full_unstemmed Generalized symmetric rings
title_sort generalized symmetric rings
author Kafkas, G.
Ungor, B.
Halicioglu, S.
Harmanci, A.
author_facet Kafkas, G.
Ungor, B.
Halicioglu, S.
Harmanci, A.
publishDate 2011
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let R be a ring with identity. A ring R is called central symmetric if for any a, b,c∈R, abc=0 implies bac belongs to the center of R. Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric. We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring R[x] is central symmetric if and only if the Laurent polynomial ring R[x,x−1] is central symmetric. Among others, it is shown that for a right principally projective ring R, R is central symmetric if and only if R[x]/(xn) is central Armendariz, where n≥2 is a natural number and (xn) is the ideal generated by xn
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154759
citation_txt Generalized symmetric rings / G. Kafkas, B. Ungor, S. Halicioglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 72–84. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT kafkasg generalizedsymmetricrings
AT ungorb generalizedsymmetricrings
AT halicioglus generalizedsymmetricrings
AT harmancia generalizedsymmetricrings
first_indexed 2025-12-07T19:48:05Z
last_indexed 2025-12-07T19:48:05Z
_version_ 1850880174416986112