2-Galois groups and the Kaplansky radical

An accurate description of the Galois group GF(2) of the maximal Galois 2-extension of a field F may be given for fields F admitting a 2-henselian valuation ring. In this note we generalize this result by characterizing the fields for which GF(2) decomposes as a free pro-2 product F∗H where F is a f...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2010
Автори: Dario, R.P., Engler, A.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154763
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:2-Galois groups and the Kaplansky radical / R.P. Dario, A.J. Engler // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 29–50. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154763
record_format dspace
spelling Dario, R.P.
Engler, A.J.
2019-06-15T20:39:32Z
2019-06-15T20:39:32Z
2010
2-Galois groups and the Kaplansky radical / R.P. Dario, A.J. Engler // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 29–50. — Бібліогр.: 19 назв. — англ.
2000 Mathematics Subject Classification:12J10; 12F10..
https://nasplib.isofts.kiev.ua/handle/123456789/154763
An accurate description of the Galois group GF(2) of the maximal Galois 2-extension of a field F may be given for fields F admitting a 2-henselian valuation ring. In this note we generalize this result by characterizing the fields for which GF(2) decomposes as a free pro-2 product F∗H where F is a free closed subgroup of GF(2) and H is the Galois group of a 2-henselian extension of F. The free product decomposition of GF(2) is equivalent to the existence of a valuation ring compatible with the Kaplansky radical of F. Fields with Kaplansky radical fulfilling prescribed conditions are constructed, as an application.
This work is part of the Ph. D. dissertation of the first author at Campinas StateUniversity under the supervision of the second author. Financial support for this researchwas provided by CAPES.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
2-Galois groups and the Kaplansky radical
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title 2-Galois groups and the Kaplansky radical
spellingShingle 2-Galois groups and the Kaplansky radical
Dario, R.P.
Engler, A.J.
title_short 2-Galois groups and the Kaplansky radical
title_full 2-Galois groups and the Kaplansky radical
title_fullStr 2-Galois groups and the Kaplansky radical
title_full_unstemmed 2-Galois groups and the Kaplansky radical
title_sort 2-galois groups and the kaplansky radical
author Dario, R.P.
Engler, A.J.
author_facet Dario, R.P.
Engler, A.J.
publishDate 2010
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description An accurate description of the Galois group GF(2) of the maximal Galois 2-extension of a field F may be given for fields F admitting a 2-henselian valuation ring. In this note we generalize this result by characterizing the fields for which GF(2) decomposes as a free pro-2 product F∗H where F is a free closed subgroup of GF(2) and H is the Galois group of a 2-henselian extension of F. The free product decomposition of GF(2) is equivalent to the existence of a valuation ring compatible with the Kaplansky radical of F. Fields with Kaplansky radical fulfilling prescribed conditions are constructed, as an application.
url https://nasplib.isofts.kiev.ua/handle/123456789/154763
citation_txt 2-Galois groups and the Kaplansky radical / R.P. Dario, A.J. Engler // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 29–50. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT dariorp 2galoisgroupsandthekaplanskyradical
AT engleraj 2galoisgroupsandthekaplanskyradical
first_indexed 2025-12-02T12:57:03Z
last_indexed 2025-12-02T12:57:03Z
_version_ 1850862552167219200