Derivations and relation modules for inverse semigroups

We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentati...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2011
Автор: Gilbert, N.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154764
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Derivations and relation modules for inverse semigroups / N.D. Gilbert// Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 1–19. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154764
record_format dspace
spelling Gilbert, N.D.
2019-06-15T20:39:59Z
2019-06-15T20:39:59Z
2011
Derivations and relation modules for inverse semigroups / N.D. Gilbert// Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 1–19. — Бібліогр.: 23 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:20M18,20M50,18G20.
https://nasplib.isofts.kiev.ua/handle/123456789/154764
We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentation module. The constructions are analogues of the first steps in the Gruenberg resolution obtained from a group presentation. We give a new proof of the characterization of inverse monoids of cohomological dimension zero, and find a class of examples of inverse semigroups of cohomological dimension one.
I am very grateful for constructive email discussions with Benjamin Steinberg andwith Jonathon Funk about this work.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Derivations and relation modules for inverse semigroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Derivations and relation modules for inverse semigroups
spellingShingle Derivations and relation modules for inverse semigroups
Gilbert, N.D.
title_short Derivations and relation modules for inverse semigroups
title_full Derivations and relation modules for inverse semigroups
title_fullStr Derivations and relation modules for inverse semigroups
title_full_unstemmed Derivations and relation modules for inverse semigroups
title_sort derivations and relation modules for inverse semigroups
author Gilbert, N.D.
author_facet Gilbert, N.D.
publishDate 2011
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentation module. The constructions are analogues of the first steps in the Gruenberg resolution obtained from a group presentation. We give a new proof of the characterization of inverse monoids of cohomological dimension zero, and find a class of examples of inverse semigroups of cohomological dimension one.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154764
fulltext
citation_txt Derivations and relation modules for inverse semigroups / N.D. Gilbert// Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 1–19. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT gilbertnd derivationsandrelationmodulesforinversesemigroups
first_indexed 2025-11-24T11:44:45Z
last_indexed 2025-11-24T11:44:45Z
_version_ 1850846100384120832