Free field realizations of certain modules for affine Lie algebra slˆ(n,C)
For the affine Lie algebra slˆ(n,C) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper exten...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2011 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154768 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Free field realizations of certain modules for affine Lie algebra slˆ(n,C) / R.A. Martins // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 28–52. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154768 |
|---|---|
| record_format |
dspace |
| spelling |
Martins, R.A. 2019-06-15T20:42:05Z 2019-06-15T20:42:05Z 2011 Free field realizations of certain modules for affine Lie algebra slˆ(n,C) / R.A. Martins // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 28–52. — Бібліогр.: 15 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:17B67, 81R10 https://nasplib.isofts.kiev.ua/handle/123456789/154768 For the affine Lie algebra slˆ(n,C) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B.Cox [С1]. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Free field realizations of certain modules for affine Lie algebra slˆ(n,C) Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
| spellingShingle |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) Martins, R.A. |
| title_short |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
| title_full |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
| title_fullStr |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
| title_full_unstemmed |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) |
| title_sort |
free field realizations of certain modules for affine lie algebra slˆ(n,c) |
| author |
Martins, R.A. |
| author_facet |
Martins, R.A. |
| publishDate |
2011 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
For the affine Lie algebra slˆ(n,C) we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B.Cox [С1].
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154768 |
| citation_txt |
Free field realizations of certain modules for affine Lie algebra slˆ(n,C) / R.A. Martins // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 28–52. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT martinsra freefieldrealizationsofcertainmodulesforaffineliealgebraslˆnc |
| first_indexed |
2025-11-27T09:34:31Z |
| last_indexed |
2025-11-27T09:34:31Z |
| _version_ |
1850852103515275264 |