On primarily multiplication modules over pullback rings
The purpose of this paper is to present a new approach to the classification of indecomposable primarily multi-plication modules with finite-dimensional top over pullback of two Dedekind domains. We extend the definition and results given in [10] to a more general primarily multiplication modules ca...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2011 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2011
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154771 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On primarily multiplication modules over pullback rings / Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 1–17. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154771 |
|---|---|
| record_format |
dspace |
| spelling |
Reza Ebrahimi Atani Shahabaddin Ebrahimi Atani 2019-06-15T20:43:55Z 2019-06-15T20:43:55Z 2011 On primarily multiplication modules over pullback rings / Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 1–17. — Бібліогр.: 30 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:13C05, 13C13, 16D70 https://nasplib.isofts.kiev.ua/handle/123456789/154771 The purpose of this paper is to present a new approach to the classification of indecomposable primarily multi-plication modules with finite-dimensional top over pullback of two Dedekind domains. We extend the definition and results given in [10] to a more general primarily multiplication modules case. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On primarily multiplication modules over pullback rings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On primarily multiplication modules over pullback rings |
| spellingShingle |
On primarily multiplication modules over pullback rings Reza Ebrahimi Atani Shahabaddin Ebrahimi Atani |
| title_short |
On primarily multiplication modules over pullback rings |
| title_full |
On primarily multiplication modules over pullback rings |
| title_fullStr |
On primarily multiplication modules over pullback rings |
| title_full_unstemmed |
On primarily multiplication modules over pullback rings |
| title_sort |
on primarily multiplication modules over pullback rings |
| author |
Reza Ebrahimi Atani Shahabaddin Ebrahimi Atani |
| author_facet |
Reza Ebrahimi Atani Shahabaddin Ebrahimi Atani |
| publishDate |
2011 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The purpose of this paper is to present a new approach to the classification of indecomposable primarily multi-plication modules with finite-dimensional top over pullback of two Dedekind domains. We extend the definition and results given in [10] to a more general primarily multiplication modules case.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154771 |
| citation_txt |
On primarily multiplication modules over pullback rings / Reza Ebrahimi Atani, Shahabaddin Ebrahimi Atani // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 1–17. — Бібліогр.: 30 назв. — англ. |
| work_keys_str_mv |
AT rezaebrahimiatani onprimarilymultiplicationmodulesoverpullbackrings AT shahabaddinebrahimiatani onprimarilymultiplicationmodulesoverpullbackrings |
| first_indexed |
2025-12-07T19:49:18Z |
| last_indexed |
2025-12-07T19:49:18Z |
| _version_ |
1850880251043774464 |