On the generators of the kernels of hyperbolic group presentations
In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some addit...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2011 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154774 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154774 |
|---|---|
| record_format |
dspace |
| spelling |
Chaynikov, V. 2019-06-15T20:45:02Z 2019-06-15T20:45:02Z 2011 On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:20F67, 20F06. https://nasplib.isofts.kiev.ua/handle/123456789/154774 In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided. The author is grateful to Aleksander Olshanskii for his guidance and many valuablesuggestions and to Denis Osin for his comments en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On the generators of the kernels of hyperbolic group presentations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the generators of the kernels of hyperbolic group presentations |
| spellingShingle |
On the generators of the kernels of hyperbolic group presentations Chaynikov, V. |
| title_short |
On the generators of the kernels of hyperbolic group presentations |
| title_full |
On the generators of the kernels of hyperbolic group presentations |
| title_fullStr |
On the generators of the kernels of hyperbolic group presentations |
| title_full_unstemmed |
On the generators of the kernels of hyperbolic group presentations |
| title_sort |
on the generators of the kernels of hyperbolic group presentations |
| author |
Chaynikov, V. |
| author_facet |
Chaynikov, V. |
| publishDate |
2011 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper we prove that if R is a (not necessarily finite) set of words satisfying certain small cancellation condition in a hyperbolic group G then the normal closure of R is free. This result was first presented (for finite set R) by T. Delzant [Delz] but the proof seems to require some additional argument. New applications of this theorem are provided.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154774 |
| citation_txt |
On the generators of the kernels of hyperbolic group presentations / V. Chaynikov// Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 18–50. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT chaynikovv onthegeneratorsofthekernelsofhyperbolicgrouppresentations |
| first_indexed |
2025-12-07T15:29:34Z |
| last_indexed |
2025-12-07T15:29:34Z |
| _version_ |
1850863910577504256 |