Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆

e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2011
Автори: Moura, A., Pereira, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154775
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154775
record_format dspace
spelling Moura, A.
Pereira, F.
2019-06-15T20:45:28Z
2019-06-15T20:45:28Z
2011
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:17B10, 17B70, 20G42.
https://nasplib.isofts.kiev.ua/handle/123456789/154775
e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
spellingShingle Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
Moura, A.
Pereira, F.
title_short Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_full Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_fullStr Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_full_unstemmed Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
title_sort graded limits of minimal affinizations and beyond: the multiplicity free case for type e₆
author Moura, A.
Pereira, F.
author_facet Moura, A.
Pereira, F.
publishDate 2011
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154775
citation_txt Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT mouraa gradedlimitsofminimalaffinizationsandbeyondthemultiplicityfreecasefortypee6
AT pereiraf gradedlimitsofminimalaffinizationsandbeyondthemultiplicityfreecasefortypee6
first_indexed 2025-12-07T20:57:58Z
last_indexed 2025-12-07T20:57:58Z
_version_ 1850884571088814080