Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2011 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154775 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154775 |
|---|---|
| record_format |
dspace |
| spelling |
Moura, A. Pereira, F. 2019-06-15T20:45:28Z 2019-06-15T20:45:28Z 2011 Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:17B10, 17B70, 20G42. https://nasplib.isofts.kiev.ua/handle/123456789/154775 e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ |
| spellingShingle |
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ Moura, A. Pereira, F. |
| title_short |
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ |
| title_full |
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ |
| title_fullStr |
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ |
| title_full_unstemmed |
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ |
| title_sort |
graded limits of minimal affinizations and beyond: the multiplicity free case for type e₆ |
| author |
Moura, A. Pereira, F. |
| author_facet |
Moura, A. Pereira, F. |
| publishDate |
2011 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
e obtain a graded character formula for certain graded modules for the current algebra over a simple Lie algebra of type E₆. For certain values of their highest weight, these modules were conjectured to be isomorphic to the classical limit of the corresponding minimal affinizations of the associated quantum group. We prove that this is the case under further restrictions on the highest weight. Under another set of conditions on the highest weight, Chari and Greenstein have recently proved that they are projective objects of a full subcategory of the category of graded modules for the current algebra. Our formula applies to all of these projective modules.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154775 |
| citation_txt |
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆ / A. Moura, F. Pereira // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 69–115. — Бібліогр.: 24 назв. — англ. |
| work_keys_str_mv |
AT mouraa gradedlimitsofminimalaffinizationsandbeyondthemultiplicityfreecasefortypee6 AT pereiraf gradedlimitsofminimalaffinizationsandbeyondthemultiplicityfreecasefortypee6 |
| first_indexed |
2025-12-07T20:57:58Z |
| last_indexed |
2025-12-07T20:57:58Z |
| _version_ |
1850884571088814080 |