H -supplemented modules with respect to a preradical

Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2011
Hauptverfasser: Talebi, Y., Moniri Hamzekolaei, A. R., Tutuncu, D. K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154821
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:H -supplemented modules with respect to a preradical/ Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 116–131. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154821
record_format dspace
spelling Talebi, Y.
Moniri Hamzekolaei, A. R.
Tutuncu, D. K.
2019-06-16T05:31:52Z
2019-06-16T05:31:52Z
2011
H -supplemented modules with respect to a preradical/ Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 116–131. — Бібліогр.: 16 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:16S90, 16D10, 16D70, 16D99.
https://nasplib.isofts.kiev.ua/handle/123456789/154821
Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and only if M₁ and M₂ are τ-H-supplemented. Secondly, let M=⊕ⁿi=1Mi be a τ-supplemented module. Assume that Mi is τ-Mj-projective for all j>i. If each Mi is τ-H-supplemented, then M is τ-H-supplemented. We also investigate the relations between τ-H-supplemented modules and τ-(⊕-)supplemented modules.
The authors would like to thank Prof. R. Wisbauer and the referee for their helpfulcomments and carefully reading this article
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
H -supplemented modules with respect to a preradical
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title H -supplemented modules with respect to a preradical
spellingShingle H -supplemented modules with respect to a preradical
Talebi, Y.
Moniri Hamzekolaei, A. R.
Tutuncu, D. K.
title_short H -supplemented modules with respect to a preradical
title_full H -supplemented modules with respect to a preradical
title_fullStr H -supplemented modules with respect to a preradical
title_full_unstemmed H -supplemented modules with respect to a preradical
title_sort h -supplemented modules with respect to a preradical
author Talebi, Y.
Moniri Hamzekolaei, A. R.
Tutuncu, D. K.
author_facet Talebi, Y.
Moniri Hamzekolaei, A. R.
Tutuncu, D. K.
publishDate 2011
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and only if M₁ and M₂ are τ-H-supplemented. Secondly, let M=⊕ⁿi=1Mi be a τ-supplemented module. Assume that Mi is τ-Mj-projective for all j>i. If each Mi is τ-H-supplemented, then M is τ-H-supplemented. We also investigate the relations between τ-H-supplemented modules and τ-(⊕-)supplemented modules.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154821
citation_txt H -supplemented modules with respect to a preradical/ Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 116–131. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT talebiy hsupplementedmoduleswithrespecttoapreradical
AT monirihamzekolaeiar hsupplementedmoduleswithrespecttoapreradical
AT tutuncudk hsupplementedmoduleswithrespecttoapreradical
first_indexed 2025-12-07T19:02:08Z
last_indexed 2025-12-07T19:02:08Z
_version_ 1850877283764535296