Generalized ⊕-supplemented modules
Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2010 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154834 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Generalized ⊕-supplemented modules / H. Calısıcı, E. Turkmen // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 10–18. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154834 |
|---|---|
| record_format |
dspace |
| spelling |
Calısıcı, H. Turkmen, E. 2019-06-16T05:38:23Z 2019-06-16T05:38:23Z 2010 Generalized ⊕-supplemented modules / H. Calısıcı, E. Turkmen // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 10–18. — Бібліогр.: 10 назв. — англ. 2000 Mathematics Subject Classification:16D10,16D99. https://nasplib.isofts.kiev.ua/handle/123456789/154834 Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is generalized ⊕-supplemented. If M is a generalized ⊕-supplemented module with (D3), then every direct summand of M is generalized ⊕-supplemented. We also give some properties of generalized cover. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Generalized ⊕-supplemented modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Generalized ⊕-supplemented modules |
| spellingShingle |
Generalized ⊕-supplemented modules Calısıcı, H. Turkmen, E. |
| title_short |
Generalized ⊕-supplemented modules |
| title_full |
Generalized ⊕-supplemented modules |
| title_fullStr |
Generalized ⊕-supplemented modules |
| title_full_unstemmed |
Generalized ⊕-supplemented modules |
| title_sort |
generalized ⊕-supplemented modules |
| author |
Calısıcı, H. Turkmen, E. |
| author_facet |
Calısıcı, H. Turkmen, E. |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is generalized ⊕-supplemented. If M is a generalized ⊕-supplemented module with (D3), then every direct summand of M is generalized ⊕-supplemented. We also give some properties of generalized cover.
|
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154834 |
| citation_txt |
Generalized ⊕-supplemented modules / H. Calısıcı, E. Turkmen // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 10–18. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT calısıcıh generalizedsupplementedmodules AT turkmene generalizedsupplementedmodules |
| first_indexed |
2025-11-27T13:08:35Z |
| last_indexed |
2025-11-27T13:08:35Z |
| _version_ |
1850852291699015680 |