A generalization of supplemented modules

Let R be an arbitrary ring with identity and M a right R-module. In this paper, we introduce a class of modules which is an analogous of δ-supplemented modules defined by Kosan. The module M is called principally δ-supplemented, for all m∈M there exists a submodule A of M with M=mR+A and (mR)∩A δ-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2011
Hauptverfasser: Inankil, H., Halıcıoglu, S., Harmanci, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/154837
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A generalization of supplemented modules / H. Inankil, S. Halıcıoglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 59–74 — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154837
record_format dspace
spelling Inankil, H.
Halıcıoglu, S.
Harmanci, A.
2019-06-16T05:39:07Z
2019-06-16T05:39:07Z
2011
A generalization of supplemented modules / H. Inankil, S. Halıcıoglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 59–74 — Бібліогр.: 16 назв. — англ.
1726-3255
2000 Mathematics Subject Classification:16U80.
https://nasplib.isofts.kiev.ua/handle/123456789/154837
Let R be an arbitrary ring with identity and M a right R-module. In this paper, we introduce a class of modules which is an analogous of δ-supplemented modules defined by Kosan. The module M is called principally δ-supplemented, for all m∈M there exists a submodule A of M with M=mR+A and (mR)∩A δ-small in A. We prove that some results of δ-supplemented modules can be extended to principally δ-supplemented modules for this general settings. We supply some examples showing that there are principally δ-supplemented modules but not δ-supplemented. We also introduce principally δ-semiperfect modules as a generalization of δ-semiperfect modules and investigate their properties.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A generalization of supplemented modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A generalization of supplemented modules
spellingShingle A generalization of supplemented modules
Inankil, H.
Halıcıoglu, S.
Harmanci, A.
title_short A generalization of supplemented modules
title_full A generalization of supplemented modules
title_fullStr A generalization of supplemented modules
title_full_unstemmed A generalization of supplemented modules
title_sort generalization of supplemented modules
author Inankil, H.
Halıcıoglu, S.
Harmanci, A.
author_facet Inankil, H.
Halıcıoglu, S.
Harmanci, A.
publishDate 2011
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let R be an arbitrary ring with identity and M a right R-module. In this paper, we introduce a class of modules which is an analogous of δ-supplemented modules defined by Kosan. The module M is called principally δ-supplemented, for all m∈M there exists a submodule A of M with M=mR+A and (mR)∩A δ-small in A. We prove that some results of δ-supplemented modules can be extended to principally δ-supplemented modules for this general settings. We supply some examples showing that there are principally δ-supplemented modules but not δ-supplemented. We also introduce principally δ-semiperfect modules as a generalization of δ-semiperfect modules and investigate their properties.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154837
citation_txt A generalization of supplemented modules / H. Inankil, S. Halıcıoglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 59–74 — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT inankilh ageneralizationofsupplementedmodules
AT halıcıoglus ageneralizationofsupplementedmodules
AT harmancia ageneralizationofsupplementedmodules
AT inankilh generalizationofsupplementedmodules
AT halıcıoglus generalizationofsupplementedmodules
AT harmancia generalizationofsupplementedmodules
first_indexed 2025-12-07T15:57:00Z
last_indexed 2025-12-07T15:57:00Z
_version_ 1850865636612243456