Partitions of groups into thin subsets
Let G be an infinite group with the identity e, κ be an infinite cardinal ≤|G|. A subset A⊂G is called κ-thin if |gA∩A|≤κ for every g∈G∖{e}. We calculate the minimal cardinal μ(G,κ) such that G can be partitioned in μ(G,κ) κ-thin subsets. In particular, we show that the statement μ(R,ℵ₀)=ℵ₀ is equiv...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2011 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154850 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Partitions of groups into thin subsets / I. Protasov // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 2. — С. 78–81. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Let G be an infinite group with the identity e, κ be an infinite cardinal ≤|G|. A subset A⊂G is called κ-thin if |gA∩A|≤κ for every g∈G∖{e}. We calculate the minimal cardinal μ(G,κ) such that G can be partitioned in μ(G,κ) κ-thin subsets. In particular, we show that the statement μ(R,ℵ₀)=ℵ₀ is equivalent to the Continuum Hypothesis.
|
|---|---|
| ISSN: | 1726-3255 |