On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point

In this paper we study the semigroup IC(I,[a]) (IO(I,[a])) of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point a∈I. We describe left and right ideals of IC(I,[0]) and the Green's relations on IC(I,[0]). We show that the semigroup IC(I,[0]) is bisimple and...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2011
Автор: Chuchman, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154866
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point / I. Chuchman // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 38–52. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154866
record_format dspace
spelling Chuchman, I.
2019-06-16T05:51:42Z
2019-06-16T05:51:42Z
2011
On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point / I. Chuchman // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 38–52. — Бібліогр.: 10 назв. — англ.
1726-3255
2010 Mathematics Subject Classification:20M20,54H15, 20M18.
https://nasplib.isofts.kiev.ua/handle/123456789/154866
In this paper we study the semigroup IC(I,[a]) (IO(I,[a])) of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point a∈I. We describe left and right ideals of IC(I,[0]) and the Green's relations on IC(I,[0]). We show that the semigroup IC(I,[0]) is bisimple and every non-trivial congruence on IC(I,[0]) is a group congruence. Also we prove that the semigroup IC(I,[0]) is isomorphic to the semigroup IO(I,[0]) and describe the structure of a semigroup II(I,[0])=IC(I,[0])⊔IO(I,[0]). As a corollary we get structures of semigroups IC(I,[a]) and IO(I,[a]) for an interior point a∈I.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
spellingShingle On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
Chuchman, I.
title_short On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
title_full On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
title_fullStr On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
title_full_unstemmed On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
title_sort on a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
author Chuchman, I.
author_facet Chuchman, I.
publishDate 2011
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper we study the semigroup IC(I,[a]) (IO(I,[a])) of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point a∈I. We describe left and right ideals of IC(I,[0]) and the Green's relations on IC(I,[0]). We show that the semigroup IC(I,[0]) is bisimple and every non-trivial congruence on IC(I,[0]) is a group congruence. Also we prove that the semigroup IC(I,[0]) is isomorphic to the semigroup IO(I,[0]) and describe the structure of a semigroup II(I,[0])=IC(I,[0])⊔IO(I,[0]). As a corollary we get structures of semigroups IC(I,[a]) and IO(I,[a]) for an interior point a∈I.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154866
citation_txt On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point / I. Chuchman // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 38–52. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT chuchmani onasemigroupofclosedconnectedpartialhomeomorphismsoftheunitintervalwithafixedpoint
first_indexed 2025-12-07T19:17:37Z
last_indexed 2025-12-07T19:17:37Z
_version_ 1850878258214600704