Quasi-duo Partial skew polynomial rings
In this paper we consider rings R with a partial action α of Z on R. We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to sho...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2011 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2011
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/154868 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Quasi-duo Partial skew polynomial rings / W. Cortes, M.Ferrero, L.Gobbi // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 53–63. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154868 |
|---|---|
| record_format |
dspace |
| spelling |
Cortes, W. Ferrero, M. Gobbi, L. 2019-06-16T05:52:15Z 2019-06-16T05:52:15Z 2011 Quasi-duo Partial skew polynomial rings / W. Cortes, M.Ferrero, L.Gobbi // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 53–63. — Бібліогр.: 8 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16S36; 16S35. https://nasplib.isofts.kiev.ua/handle/123456789/154868 In this paper we consider rings R with a partial action α of Z on R. We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to show that our results are not an easy generalization of the global case. The second named author was partially supported by Conselho Nacional de De-senvolvimento Cientfico e Tecnolgico (CNPq, Brazil) and the third named author waspartially supported by Capes (Brazil) en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Quasi-duo Partial skew polynomial rings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Quasi-duo Partial skew polynomial rings |
| spellingShingle |
Quasi-duo Partial skew polynomial rings Cortes, W. Ferrero, M. Gobbi, L. |
| title_short |
Quasi-duo Partial skew polynomial rings |
| title_full |
Quasi-duo Partial skew polynomial rings |
| title_fullStr |
Quasi-duo Partial skew polynomial rings |
| title_full_unstemmed |
Quasi-duo Partial skew polynomial rings |
| title_sort |
quasi-duo partial skew polynomial rings |
| author |
Cortes, W. Ferrero, M. Gobbi, L. |
| author_facet |
Cortes, W. Ferrero, M. Gobbi, L. |
| publishDate |
2011 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper we consider rings R with a partial action α of Z on R. We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to show that our results are not an easy generalization of the global case.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154868 |
| citation_txt |
Quasi-duo Partial skew polynomial rings / W. Cortes, M.Ferrero, L.Gobbi // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 53–63. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT cortesw quasiduopartialskewpolynomialrings AT ferrerom quasiduopartialskewpolynomialrings AT gobbil quasiduopartialskewpolynomialrings |
| first_indexed |
2025-12-02T00:25:57Z |
| last_indexed |
2025-12-02T00:25:57Z |
| _version_ |
1850861227827265536 |