On separable and H-separable polynomials in skew polynomial rings of several variables
Let B be a ring with 1, and {ρ1,⋯,ρe} a set of automorphisms of B. Let B[X1,⋯,Xe;ρ1,⋯,ρe;{uij}] be the skew polynomial ring of automorphism type. In this paper, we shall give equivalent conditions that the residue ring of B[X1,⋯,Xe;ρ1,⋯,ρe;{uij}] by the ideal generated by a set {Xm11−u1,⋯,Xmee−ue} t...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2010 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2010
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154870 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On separable and H-separable polynomials in skew polynomial rings of several variables / S.Ikehata // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 87–85. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154870 |
|---|---|
| record_format |
dspace |
| spelling |
Ikehata, S. 2019-06-16T05:53:48Z 2019-06-16T05:53:48Z 2010 On separable and H-separable polynomials in skew polynomial rings of several variables / S.Ikehata // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 87–85. — Бібліогр.: 13 назв. — англ. 2000 Mathematics Subject Classification:16S30, 16W20 https://nasplib.isofts.kiev.ua/handle/123456789/154870 Let B be a ring with 1, and {ρ1,⋯,ρe} a set of automorphisms of B. Let B[X1,⋯,Xe;ρ1,⋯,ρe;{uij}] be the skew polynomial ring of automorphism type. In this paper, we shall give equivalent conditions that the residue ring of B[X1,⋯,Xe;ρ1,⋯,ρe;{uij}] by the ideal generated by a set {Xm11−u1,⋯,Xmee−ue} to be separable or H-separable over B. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On separable and H-separable polynomials in skew polynomial rings of several variables Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On separable and H-separable polynomials in skew polynomial rings of several variables |
| spellingShingle |
On separable and H-separable polynomials in skew polynomial rings of several variables Ikehata, S. |
| title_short |
On separable and H-separable polynomials in skew polynomial rings of several variables |
| title_full |
On separable and H-separable polynomials in skew polynomial rings of several variables |
| title_fullStr |
On separable and H-separable polynomials in skew polynomial rings of several variables |
| title_full_unstemmed |
On separable and H-separable polynomials in skew polynomial rings of several variables |
| title_sort |
on separable and h-separable polynomials in skew polynomial rings of several variables |
| author |
Ikehata, S. |
| author_facet |
Ikehata, S. |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let B be a ring with 1, and {ρ1,⋯,ρe} a set of automorphisms of B. Let B[X1,⋯,Xe;ρ1,⋯,ρe;{uij}] be the skew polynomial ring of automorphism type. In this paper, we shall give equivalent conditions that the residue ring of B[X1,⋯,Xe;ρ1,⋯,ρe;{uij}] by the ideal generated by a set {Xm11−u1,⋯,Xmee−ue} to be separable or H-separable over B.
|
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154870 |
| citation_txt |
On separable and H-separable polynomials in skew polynomial rings of several variables / S.Ikehata // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 87–85. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT ikehatas onseparableandhseparablepolynomialsinskewpolynomialringsofseveralvariables |
| first_indexed |
2025-12-07T15:16:19Z |
| last_indexed |
2025-12-07T15:16:19Z |
| _version_ |
1850863076528619520 |