On separable group rings
Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2010 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/154882 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On separable group rings / G. Szeto, Lianyong Xue // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 104–111. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154882 |
|---|---|
| record_format |
dspace |
| spelling |
Szeto, G. Lianyong Xue 2019-06-16T06:00:40Z 2019-06-16T06:00:40Z 2010 On separable group rings / G. Szeto, Lianyong Xue // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 104–111. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16S35, 16W20. https://nasplib.isofts.kiev.ua/handle/123456789/154882 Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of G is invertible in R, (ii) an equivalent condition for the Galois map from the subgroups H of G to (RG)H by the conjugate action of elements in H on RG is given to be one-to-one and for a separable subalgebra of RG having a preimage, respectively, and (iii) the Galois map is not an onto map. Remove selected This paper was written under the support of a Caterpillar Fellowship at BradleyUniversity. The authors would like to thank Caterpillar Inc. for the support en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On separable group rings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On separable group rings |
| spellingShingle |
On separable group rings Szeto, G. Lianyong Xue |
| title_short |
On separable group rings |
| title_full |
On separable group rings |
| title_fullStr |
On separable group rings |
| title_full_unstemmed |
On separable group rings |
| title_sort |
on separable group rings |
| author |
Szeto, G. Lianyong Xue |
| author_facet |
Szeto, G. Lianyong Xue |
| publishDate |
2010 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of G is invertible in R, (ii) an equivalent condition for the Galois map from the subgroups H of G to (RG)H by the conjugate action of elements in H on RG is given to be one-to-one and for a separable subalgebra of RG having a preimage, respectively, and (iii) the Galois map is not an onto map.
Remove selected
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154882 |
| citation_txt |
On separable group rings / G. Szeto, Lianyong Xue // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 104–111. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT szetog onseparablegrouprings AT lianyongxue onseparablegrouprings |
| first_indexed |
2025-12-02T01:26:13Z |
| last_indexed |
2025-12-02T01:26:13Z |
| _version_ |
1850861273359581185 |