On algebraic graph theory and non-bijective multivariate maps in cryptography
Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptos...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2015 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/154900 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On algebraic graph theory and non-bijective multivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 152-170. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-154900 |
|---|---|
| record_format |
dspace |
| spelling |
Ustimenko, V. 2019-06-16T06:07:36Z 2019-06-16T06:07:36Z 2015 On algebraic graph theory and non-bijective multivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 152-170. — Бібліогр.: 33 назв. — англ. 1726-3255 https://nasplib.isofts.kiev.ua/handle/123456789/154900 Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptosystem'' is proposed. Similar construction is suggested for the case Ωn=Zm∗ⁿ. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On algebraic graph theory and non-bijective multivariate maps in cryptography Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On algebraic graph theory and non-bijective multivariate maps in cryptography |
| spellingShingle |
On algebraic graph theory and non-bijective multivariate maps in cryptography Ustimenko, V. |
| title_short |
On algebraic graph theory and non-bijective multivariate maps in cryptography |
| title_full |
On algebraic graph theory and non-bijective multivariate maps in cryptography |
| title_fullStr |
On algebraic graph theory and non-bijective multivariate maps in cryptography |
| title_full_unstemmed |
On algebraic graph theory and non-bijective multivariate maps in cryptography |
| title_sort |
on algebraic graph theory and non-bijective multivariate maps in cryptography |
| author |
Ustimenko, V. |
| author_facet |
Ustimenko, V. |
| publishDate |
2015 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptosystem'' is proposed.
Similar construction is suggested for the case Ωn=Zm∗ⁿ.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/154900 |
| citation_txt |
On algebraic graph theory and non-bijective multivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 152-170. — Бібліогр.: 33 назв. — англ. |
| work_keys_str_mv |
AT ustimenkov onalgebraicgraphtheoryandnonbijectivemultivariatemapsincryptography |
| first_indexed |
2025-11-30T22:45:10Z |
| last_indexed |
2025-11-30T22:45:10Z |
| _version_ |
1850858676531757056 |