On algebraic graph theory and non-bijective multivariate maps in cryptography

Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptos...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2015
Автор: Ustimenko, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/154900
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On algebraic graph theory and non-bijective multivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 152-170. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-154900
record_format dspace
spelling Ustimenko, V.
2019-06-16T06:07:36Z
2019-06-16T06:07:36Z
2015
On algebraic graph theory and non-bijective multivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 152-170. — Бібліогр.: 33 назв. — англ.
1726-3255
https://nasplib.isofts.kiev.ua/handle/123456789/154900
Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptosystem'' is proposed. Similar construction is suggested for the case Ωn=Zm∗ⁿ.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On algebraic graph theory and non-bijective multivariate maps in cryptography
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On algebraic graph theory and non-bijective multivariate maps in cryptography
spellingShingle On algebraic graph theory and non-bijective multivariate maps in cryptography
Ustimenko, V.
title_short On algebraic graph theory and non-bijective multivariate maps in cryptography
title_full On algebraic graph theory and non-bijective multivariate maps in cryptography
title_fullStr On algebraic graph theory and non-bijective multivariate maps in cryptography
title_full_unstemmed On algebraic graph theory and non-bijective multivariate maps in cryptography
title_sort on algebraic graph theory and non-bijective multivariate maps in cryptography
author Ustimenko, V.
author_facet Ustimenko, V.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptosystem'' is proposed. Similar construction is suggested for the case Ωn=Zm∗ⁿ.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/154900
citation_txt On algebraic graph theory and non-bijective multivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 152-170. — Бібліогр.: 33 назв. — англ.
work_keys_str_mv AT ustimenkov onalgebraicgraphtheoryandnonbijectivemultivariatemapsincryptography
first_indexed 2025-11-30T22:45:10Z
last_indexed 2025-11-30T22:45:10Z
_version_ 1850858676531757056