On the le-semigroups whose semigroup of bi-ideal elements is a normal band

It is well known that the semigroup B(S) of all bi-ideal elements of an le-semigroup S is a band if and only if S is both regular and intra-regular. Here we show that B(S) is a band if and only if it is a normal band and give a complete characterization of the le-semigroups S for which the associate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2015
Hauptverfasser: Bhuniya, A.K., Kumbhakar, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155148
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the le-semigroups whose semigroup of bi-ideal elements is a normal band / A.K. Bhuniya, M. Kumbhakar // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 171-181. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155148
record_format dspace
spelling Bhuniya, A.K.
Kumbhakar, M.
2019-06-16T09:52:30Z
2019-06-16T09:52:30Z
2015
On the le-semigroups whose semigroup of bi-ideal elements is a normal band / A.K. Bhuniya, M. Kumbhakar // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 171-181. — Бібліогр.: 24 назв. — англ.
1726-3255
2010 MSC:06F05.
https://nasplib.isofts.kiev.ua/handle/123456789/155148
It is well known that the semigroup B(S) of all bi-ideal elements of an le-semigroup S is a band if and only if S is both regular and intra-regular. Here we show that B(S) is a band if and only if it is a normal band and give a complete characterization of the le-semigroups S for which the associated semigroup B(S) is in each of the seven nontrivial subvarieties of normal bands. We also show that the set Bm(S) of all minimal bi-ideal elements of S forms a rectangular band and that Bm(S) is a bi-ideal of the semigroup B(S).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On the le-semigroups whose semigroup of bi-ideal elements is a normal band
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the le-semigroups whose semigroup of bi-ideal elements is a normal band
spellingShingle On the le-semigroups whose semigroup of bi-ideal elements is a normal band
Bhuniya, A.K.
Kumbhakar, M.
title_short On the le-semigroups whose semigroup of bi-ideal elements is a normal band
title_full On the le-semigroups whose semigroup of bi-ideal elements is a normal band
title_fullStr On the le-semigroups whose semigroup of bi-ideal elements is a normal band
title_full_unstemmed On the le-semigroups whose semigroup of bi-ideal elements is a normal band
title_sort on the le-semigroups whose semigroup of bi-ideal elements is a normal band
author Bhuniya, A.K.
Kumbhakar, M.
author_facet Bhuniya, A.K.
Kumbhakar, M.
publishDate 2015
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description It is well known that the semigroup B(S) of all bi-ideal elements of an le-semigroup S is a band if and only if S is both regular and intra-regular. Here we show that B(S) is a band if and only if it is a normal band and give a complete characterization of the le-semigroups S for which the associated semigroup B(S) is in each of the seven nontrivial subvarieties of normal bands. We also show that the set Bm(S) of all minimal bi-ideal elements of S forms a rectangular band and that Bm(S) is a bi-ideal of the semigroup B(S).
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155148
citation_txt On the le-semigroups whose semigroup of bi-ideal elements is a normal band / A.K. Bhuniya, M. Kumbhakar // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 171-181. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT bhuniyaak onthelesemigroupswhosesemigroupofbiidealelementsisanormalband
AT kumbhakarm onthelesemigroupswhosesemigroupofbiidealelementsisanormalband
first_indexed 2025-12-07T21:01:07Z
last_indexed 2025-12-07T21:01:07Z
_version_ 1850884770051915776