Quasi-Euclidean duo rings with elementary reduction of matrices
We establish necessary and sufficient conditions under which a class of quasi-Euclidean duo rings coincides with a class of rings with elementary reduction of matrices. We prove that a Bezout duo ring with stable range 1 is a ring with elementary reduction of matrices. It is proved that a semiexchan...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/155173 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Quasi-Euclidean duo rings with elementary reduction of matrices / O. Romaniv, A. Sagan // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 317-324. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-155173 |
|---|---|
| record_format |
dspace |
| spelling |
Romaniv, O. Sagan, A. 2019-06-16T10:10:59Z 2019-06-16T10:10:59Z 2015 Quasi-Euclidean duo rings with elementary reduction of matrices / O. Romaniv, A. Sagan // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 317-324. — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC:13F99. https://nasplib.isofts.kiev.ua/handle/123456789/155173 We establish necessary and sufficient conditions under which a class of quasi-Euclidean duo rings coincides with a class of rings with elementary reduction of matrices. We prove that a Bezout duo ring with stable range 1 is a ring with elementary reduction of matrices. It is proved that a semiexchange quasi-duo Bezout ring is a ring with elementary reduction of matrices iff it is a duo ring. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Quasi-Euclidean duo rings with elementary reduction of matrices Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Quasi-Euclidean duo rings with elementary reduction of matrices |
| spellingShingle |
Quasi-Euclidean duo rings with elementary reduction of matrices Romaniv, O. Sagan, A. |
| title_short |
Quasi-Euclidean duo rings with elementary reduction of matrices |
| title_full |
Quasi-Euclidean duo rings with elementary reduction of matrices |
| title_fullStr |
Quasi-Euclidean duo rings with elementary reduction of matrices |
| title_full_unstemmed |
Quasi-Euclidean duo rings with elementary reduction of matrices |
| title_sort |
quasi-euclidean duo rings with elementary reduction of matrices |
| author |
Romaniv, O. Sagan, A. |
| author_facet |
Romaniv, O. Sagan, A. |
| publishDate |
2015 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We establish necessary and sufficient conditions under which a class of quasi-Euclidean duo rings coincides with a class of rings with elementary reduction of matrices. We prove that a Bezout duo ring with stable range 1 is a ring with elementary reduction of matrices. It is proved that a semiexchange quasi-duo Bezout ring is a ring with elementary reduction of matrices iff it is a duo ring.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/155173 |
| citation_txt |
Quasi-Euclidean duo rings with elementary reduction of matrices / O. Romaniv, A. Sagan // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 317-324. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT romanivo quasieuclideanduoringswithelementaryreductionofmatrices AT sagana quasieuclideanduoringswithelementaryreductionofmatrices |
| first_indexed |
2025-12-01T05:18:40Z |
| last_indexed |
2025-12-01T05:18:40Z |
| _version_ |
1850859433321562112 |