Co-intersection graph of submodules of a module
Let M be a unitary left R-module where R is a ring with identity. The co-intersection graph of proper submodules of M, denoted by Ω(M), is an undirected simple graph whose the vertex set V(Ω) is a set of all non-trivial submodules of M and there is an edge between two distinct vertices N and K if an...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2016 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/155196 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Co-intersection graph of submodules of a module / L.A. Mahdavi, Y. Talebi // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 128-143. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-155196 |
|---|---|
| record_format |
dspace |
| spelling |
Mahdavi, L.A. Talebi, Y. 2019-06-16T10:46:54Z 2019-06-16T10:46:54Z 2016 Co-intersection graph of submodules of a module / L.A. Mahdavi, Y. Talebi // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 128-143. — Бібліогр.: 11 назв. — англ. 1726-3255 2010 MSC:05C15, 05C25, 05C69, 16D10. https://nasplib.isofts.kiev.ua/handle/123456789/155196 Let M be a unitary left R-module where R is a ring with identity. The co-intersection graph of proper submodules of M, denoted by Ω(M), is an undirected simple graph whose the vertex set V(Ω) is a set of all non-trivial submodules of M and there is an edge between two distinct vertices N and K if and only if N+K≠M. In this paper we investigate connections between the graph-theoretic properties of Ω(M) and some algebraic properties of modules . We characterize all of modules for which the co-intersection graph of submodules is connected. Also the diameter and the girth of Ω(M) are determined. We study the clique number and the chromatic number of Ω(M). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Co-intersection graph of submodules of a module Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Co-intersection graph of submodules of a module |
| spellingShingle |
Co-intersection graph of submodules of a module Mahdavi, L.A. Talebi, Y. |
| title_short |
Co-intersection graph of submodules of a module |
| title_full |
Co-intersection graph of submodules of a module |
| title_fullStr |
Co-intersection graph of submodules of a module |
| title_full_unstemmed |
Co-intersection graph of submodules of a module |
| title_sort |
co-intersection graph of submodules of a module |
| author |
Mahdavi, L.A. Talebi, Y. |
| author_facet |
Mahdavi, L.A. Talebi, Y. |
| publishDate |
2016 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let M be a unitary left R-module where R is a ring with identity. The co-intersection graph of proper submodules of M, denoted by Ω(M), is an undirected simple graph whose the vertex set V(Ω) is a set of all non-trivial submodules of M and there is an edge between two distinct vertices N and K if and only if N+K≠M. In this paper we investigate connections between the graph-theoretic properties of Ω(M) and some algebraic properties of modules . We characterize all of modules for which the co-intersection graph of submodules is connected. Also the diameter and the girth of Ω(M) are determined. We study the clique number and the chromatic number of Ω(M).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/155196 |
| citation_txt |
Co-intersection graph of submodules of a module / L.A. Mahdavi, Y. Talebi // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 128-143. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT mahdavila cointersectiongraphofsubmodulesofamodule AT talebiy cointersectiongraphofsubmodulesofamodule |
| first_indexed |
2025-12-07T17:12:10Z |
| last_indexed |
2025-12-07T17:12:10Z |
| _version_ |
1850870365525377024 |