Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes

The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2016
Hauptverfasser: Hannusch, C., Lakatos, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155203
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155203
record_format dspace
spelling Hannusch, C.
Lakatos, P.
2019-06-16T10:56:43Z
2019-06-16T10:56:43Z
2016
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ.
1726-3255
2010 MSC:94B05, 11T71, 20C05.
https://nasplib.isofts.kiev.ua/handle/123456789/155203
The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.
Research of the first author was partially supported by funding of EU’s FP7/2007-2013 grant No. 318202.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
spellingShingle Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
Hannusch, C.
Lakatos, P.
title_short Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_full Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_fullStr Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_full_unstemmed Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_sort construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
author Hannusch, C.
Lakatos, P.
author_facet Hannusch, C.
Lakatos, P.
publishDate 2016
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155203
citation_txt Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT hannuschc constructionofselfdualbinary22n22n12ncodes
AT lakatosp constructionofselfdualbinary22n22n12ncodes
first_indexed 2025-12-07T16:43:07Z
last_indexed 2025-12-07T16:43:07Z
_version_ 1850868537685442560