The groups whose cyclic subgroups are either ascendant or almost self-normalizing
The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2016 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/155208 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-155208 |
|---|---|
| record_format |
dspace |
| spelling |
Kurdachenko, L.A. Pypka, A.A. Semko, N.N. 2019-06-16T10:59:41Z 2019-06-16T10:59:41Z 2016 The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ. 1726-3255 2010 MSC:20E15, 20F19, 20F22, 20F50. https://nasplib.isofts.kiev.ua/handle/123456789/155208 The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics The groups whose cyclic subgroups are either ascendant or almost self-normalizing Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
| spellingShingle |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing Kurdachenko, L.A. Pypka, A.A. Semko, N.N. |
| title_short |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
| title_full |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
| title_fullStr |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
| title_full_unstemmed |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
| title_sort |
groups whose cyclic subgroups are either ascendant or almost self-normalizing |
| author |
Kurdachenko, L.A. Pypka, A.A. Semko, N.N. |
| author_facet |
Kurdachenko, L.A. Pypka, A.A. Semko, N.N. |
| publishDate |
2016 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/155208 |
| citation_txt |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ. |
| work_keys_str_mv |
AT kurdachenkola thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT pypkaaa thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT semkonn thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT kurdachenkola groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT pypkaaa groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT semkonn groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing |
| first_indexed |
2025-12-07T15:18:21Z |
| last_indexed |
2025-12-07T15:18:21Z |
| _version_ |
1850863205166874624 |