The groups whose cyclic subgroups are either ascendant or almost self-normalizing

The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2016
Hauptverfasser: Kurdachenko, L.A., Pypka, A.A., Semko, N.N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155208
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155208
record_format dspace
spelling Kurdachenko, L.A.
Pypka, A.A.
Semko, N.N.
2019-06-16T10:59:41Z
2019-06-16T10:59:41Z
2016
The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ.
1726-3255
2010 MSC:20E15, 20F19, 20F22, 20F50.
https://nasplib.isofts.kiev.ua/handle/123456789/155208
The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
The groups whose cyclic subgroups are either ascendant or almost self-normalizing
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The groups whose cyclic subgroups are either ascendant or almost self-normalizing
spellingShingle The groups whose cyclic subgroups are either ascendant or almost self-normalizing
Kurdachenko, L.A.
Pypka, A.A.
Semko, N.N.
title_short The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_fullStr The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full_unstemmed The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_sort groups whose cyclic subgroups are either ascendant or almost self-normalizing
author Kurdachenko, L.A.
Pypka, A.A.
Semko, N.N.
author_facet Kurdachenko, L.A.
Pypka, A.A.
Semko, N.N.
publishDate 2016
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155208
citation_txt The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT kurdachenkola thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT pypkaaa thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT semkonn thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT kurdachenkola groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT pypkaaa groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT semkonn groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
first_indexed 2025-12-07T15:18:21Z
last_indexed 2025-12-07T15:18:21Z
_version_ 1850863205166874624