Weak Frobenius monads and Frobenius bimodules

As observed by Eilenberg and Moore (1965), for a monad F with right adjoint comonad G on any category A, the category of unital F-modules AF is isomorphic to the category of counital G-comodules AG. The monad F is Frobenius provided we have F=G and then AF≃AF. Here we investigate which kind of is...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2016
Автор: Wisbauer, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/155238
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weak Frobenius monads and Frobenius bimodules / R. Wisbauer // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 287–308. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155238
record_format dspace
spelling Wisbauer, R.
2019-06-16T14:26:41Z
2019-06-16T14:26:41Z
2016
Weak Frobenius monads and Frobenius bimodules / R. Wisbauer // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 287–308. — Бібліогр.: 8 назв. — англ.
1726-3255
2010 MSC:18A40, 18C20, 16T1.
https://nasplib.isofts.kiev.ua/handle/123456789/155238
As observed by Eilenberg and Moore (1965), for a monad F with right adjoint comonad G on any category A, the category of unital F-modules AF is isomorphic to the category of counital G-comodules AG. The monad F is Frobenius provided we have F=G and then AF≃AF. Here we investigate which kind of isomorphisms can be obtained for non-unital monads and non-counital comonads. For this we observe that the mentioned isomorphism is in fact an isomorphisms between AF and the category of bimodules AFF subject to certain compatibility conditions (Frobenius bimodules). Eventually we obtain that for a weak monad (F,m,η) and a weak comonad (F,δ,ε) satisfying Fm⋅δF=δ⋅m=mF⋅Fδ and m⋅Fη=Fε⋅δ, the category of compatible F-modules is isomorphic to the category of compatible Frobenius bimodules and the category of compatible F-comodules.
The author wants to thank Bachuki Mesablishvili for proofreading.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Weak Frobenius monads and Frobenius bimodules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Weak Frobenius monads and Frobenius bimodules
spellingShingle Weak Frobenius monads and Frobenius bimodules
Wisbauer, R.
title_short Weak Frobenius monads and Frobenius bimodules
title_full Weak Frobenius monads and Frobenius bimodules
title_fullStr Weak Frobenius monads and Frobenius bimodules
title_full_unstemmed Weak Frobenius monads and Frobenius bimodules
title_sort weak frobenius monads and frobenius bimodules
author Wisbauer, R.
author_facet Wisbauer, R.
publishDate 2016
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description As observed by Eilenberg and Moore (1965), for a monad F with right adjoint comonad G on any category A, the category of unital F-modules AF is isomorphic to the category of counital G-comodules AG. The monad F is Frobenius provided we have F=G and then AF≃AF. Here we investigate which kind of isomorphisms can be obtained for non-unital monads and non-counital comonads. For this we observe that the mentioned isomorphism is in fact an isomorphisms between AF and the category of bimodules AFF subject to certain compatibility conditions (Frobenius bimodules). Eventually we obtain that for a weak monad (F,m,η) and a weak comonad (F,δ,ε) satisfying Fm⋅δF=δ⋅m=mF⋅Fδ and m⋅Fη=Fε⋅δ, the category of compatible F-modules is isomorphic to the category of compatible Frobenius bimodules and the category of compatible F-comodules.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155238
citation_txt Weak Frobenius monads and Frobenius bimodules / R. Wisbauer // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 287–308. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT wisbauerr weakfrobeniusmonadsandfrobeniusbimodules
first_indexed 2025-12-07T15:42:22Z
last_indexed 2025-12-07T15:42:22Z
_version_ 1850864716153356288