The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs

Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2016
1. Verfasser: Pawlik, B.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155248
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs / B.T. Pawlik // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 264–281. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155248
record_format dspace
spelling Pawlik, B.T.
2019-06-16T14:38:23Z
2019-06-16T14:38:23Z
2016
The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs / B.T. Pawlik // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 264–281. — Бібліогр.: 6 назв. — англ.
1726-3255
2010 MSC:20B35, 20D20, 20E22, 05C25.
https://nasplib.isofts.kiev.ua/handle/123456789/155248
Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented paper the~stabilizer of the set of all diagonal bases in Sn(2) is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly 2n−1 diagonal bases and 2²n−²n bases at all. Recursive construction of Cayley graphs of Pn(2) on diagonal bases (n≥2) is proposed.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
spellingShingle The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
Pawlik, B.T.
title_short The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
title_full The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
title_fullStr The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
title_full_unstemmed The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
title_sort action of sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their cayley graphs
author Pawlik, B.T.
author_facet Pawlik, B.T.
publishDate 2016
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented paper the~stabilizer of the set of all diagonal bases in Sn(2) is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly 2n−1 diagonal bases and 2²n−²n bases at all. Recursive construction of Cayley graphs of Pn(2) on diagonal bases (n≥2) is proposed.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155248
citation_txt The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs / B.T. Pawlik // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 264–281. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT pawlikbt theactionofsylow2subgroupsofsymmetricgroupsonthesetofbasesandtheproblemofisomorphismoftheircayleygraphs
AT pawlikbt actionofsylow2subgroupsofsymmetricgroupsonthesetofbasesandtheproblemofisomorphismoftheircayleygraphs
first_indexed 2025-12-07T18:55:30Z
last_indexed 2025-12-07T18:55:30Z
_version_ 1850876866109374464