Elastic properties of 5d transition-metal carbides: An ab initio study

We have systematically studied the mechanical stability of group V transition metal carbides TMC₂ (TM=Hf, Ta, W, Re, Os, Ir, Pt, and Au) in the pyrite and fluorite phase, by calculating their elastic constants within the density functional theory scheme. It was found that all but ReC₂ and OsC₂ are s...

Full description

Saved in:
Bibliographic Details
Published in:Condensed Matter Physics
Date:2015
Main Authors: Mex, L., Aguayo, A., Murrieta, G.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155269
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Elastic properties of 5d transition-metal carbides: An ab initio study / L. Mex, A. Aguayo, G. Murrieta // Condensed Matter Physics. — 2015. — Т. 18, № 3. — С. 33801: 1–7. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155269
record_format dspace
spelling Mex, L.
Aguayo, A.
Murrieta, G.
2019-06-16T15:15:08Z
2019-06-16T15:15:08Z
2015
Elastic properties of 5d transition-metal carbides: An ab initio study / L. Mex, A. Aguayo, G. Murrieta // Condensed Matter Physics. — 2015. — Т. 18, № 3. — С. 33801: 1–7. — Бібліогр.: 24 назв. — англ.
1607-324X
DOI:10.5488/CMP.18.33801
arXiv:1510.06917
PACS: 81.05.Je, 81.05.Zx, 71.15.Mb, 71.20.Be
https://nasplib.isofts.kiev.ua/handle/123456789/155269
We have systematically studied the mechanical stability of group V transition metal carbides TMC₂ (TM=Hf, Ta, W, Re, Os, Ir, Pt, and Au) in the pyrite and fluorite phase, by calculating their elastic constants within the density functional theory scheme. It was found that all but ReC₂ and OsC₂ are stable in pyrite phase. On the other hand, all metal carbides studied were unstable in the fluorite phase.
Проведено систематичнi дослiдження менханiчної стiйкостi карбiдiв перехiдних металiв п’ятої групи TMC₂ (TM = Hf, Ta, W, Re, Os, Ir, Pt, i Au) у пiритовiй i флюоритовiй фазах шляхом обчислення їх еластичних сталих в рамках теорiї функцiоналу густини. Встановлено, що всi карбiди металiв, за винятком ReC₂ i OsC₂, є стiйкими у пiритовiй фазi. З iншого боку, всi метали карбiдiв, що вивчалися, виявилися нестiйкими у флюоритовiй фазi.
The authors would like to thank Carlos Brito for helpful comments. This work was supported by Facultad de Matámaticas-UADY under Grant no. FMAT–2012–0007 and CONACyT under Grant no. 025794.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Elastic properties of 5d transition-metal carbides: An ab initio study
Еластичнi властивостi карбiдiв 5d перехiдних металiв: ab initio дослiдження
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Elastic properties of 5d transition-metal carbides: An ab initio study
spellingShingle Elastic properties of 5d transition-metal carbides: An ab initio study
Mex, L.
Aguayo, A.
Murrieta, G.
title_short Elastic properties of 5d transition-metal carbides: An ab initio study
title_full Elastic properties of 5d transition-metal carbides: An ab initio study
title_fullStr Elastic properties of 5d transition-metal carbides: An ab initio study
title_full_unstemmed Elastic properties of 5d transition-metal carbides: An ab initio study
title_sort elastic properties of 5d transition-metal carbides: an ab initio study
author Mex, L.
Aguayo, A.
Murrieta, G.
author_facet Mex, L.
Aguayo, A.
Murrieta, G.
publishDate 2015
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Еластичнi властивостi карбiдiв 5d перехiдних металiв: ab initio дослiдження
description We have systematically studied the mechanical stability of group V transition metal carbides TMC₂ (TM=Hf, Ta, W, Re, Os, Ir, Pt, and Au) in the pyrite and fluorite phase, by calculating their elastic constants within the density functional theory scheme. It was found that all but ReC₂ and OsC₂ are stable in pyrite phase. On the other hand, all metal carbides studied were unstable in the fluorite phase. Проведено систематичнi дослiдження менханiчної стiйкостi карбiдiв перехiдних металiв п’ятої групи TMC₂ (TM = Hf, Ta, W, Re, Os, Ir, Pt, i Au) у пiритовiй i флюоритовiй фазах шляхом обчислення їх еластичних сталих в рамках теорiї функцiоналу густини. Встановлено, що всi карбiди металiв, за винятком ReC₂ i OsC₂, є стiйкими у пiритовiй фазi. З iншого боку, всi метали карбiдiв, що вивчалися, виявилися нестiйкими у флюоритовiй фазi.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/155269
citation_txt Elastic properties of 5d transition-metal carbides: An ab initio study / L. Mex, A. Aguayo, G. Murrieta // Condensed Matter Physics. — 2015. — Т. 18, № 3. — С. 33801: 1–7. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT mexl elasticpropertiesof5dtransitionmetalcarbidesanabinitiostudy
AT aguayoa elasticpropertiesof5dtransitionmetalcarbidesanabinitiostudy
AT murrietag elasticpropertiesof5dtransitionmetalcarbidesanabinitiostudy
AT mexl elastičnivlastivostikarbidiv5dperehidnihmetalivabinitiodoslidžennâ
AT aguayoa elastičnivlastivostikarbidiv5dperehidnihmetalivabinitiodoslidžennâ
AT murrietag elastičnivlastivostikarbidiv5dperehidnihmetalivabinitiodoslidžennâ
first_indexed 2025-11-25T14:38:54Z
last_indexed 2025-11-25T14:38:54Z
_version_ 1850514941424959488
fulltext Condensed Matter Physics, 2015, Vol. 18, No 3, 33801: 1–7 DOI: 10.5488/CMP.18.33801 http://www.icmp.lviv.ua/journal Elastic properties of 5d transition-metal carbides: An ab initio study L. Mex1, A. Aguayo2, G. Murrieta2 1 Facultad de Ingeniería, Universidad Autynoma de Yucatán. Av. Industrias no Contaminantes por Periférico Norte Apdo. Postal 150 Cordemex Mérida, Yucatán, México 2 Facultad de Matemáticas, Universidad Autynoma de Yucatán. Periférico Norte, Tablaje 13615, C. P. 97110, Mérida, Yucatán, México Received December 9, 2014, in final form April 14, 2015 We have systematically studied the mechanical stability of group V transition metal carbides TMC2 (TM =Hf, Ta, W, Re, Os, Ir, Pt, and Au) in the pyrite and fluorite phase, by calculating their elastic constants within the density functional theory scheme. It was found that all but ReC2 and OsC2 are stable in pyrite phase. On the other hand, all metal carbides studied were unstable in the fluorite phase. Key words: first-principles calculation, elastic constants, hard material, transition metals PACS: 81.05.Je, 81.05.Zx, 71.15.Mb, 71.20.Be 1. Introduction The elastic stability criterion has been used to establish the possible stability or metastability of a crystallographic phase in the solid state. It has been shown that through the first-principles calculation it is possible to obtain the elastic properties and to describe the strength of the bond between neighboring atoms. Since the adequacy of the theoretical results made it possible to adequately predict the formation of new crystal structures, it became possible to synthesize some of the predicted structures. Intensive theoretical and experimental efforts have been focused on the possibility of finding new low compressibility materials with hardness comparable with diamond [1]. Superhard materials are of primary importance in modern science and technology due to their numerous applications, starting from cutting and polishing tools up to wear resistant coatings. In this search, special interest has been taken in the metal carbides and nitrides. The introduction of smaller atoms such as nitrogen or carbon into interstitial sites in closely packed transition metal lattices changes their chemical and physical properties with respect to themetal. Transitionmetal carbides and nitrides have been considerably investigated due to their unique chemical and physical properties, such as high thermal conductivity, high melting point, chemical inertness, high stiffness, high hardness, and metallic electrical conductivity [2–7]. Transition metal carbides or nitrides had been little studied due to the difficulty of obtaining the crystalline sam- ples. However, a series of works such as PtN, PtN2, IrN2, and PtC [8] triggered a rapid advance in the pro- duction of new carbide and nitride materials. They can have different morphologies, atomic structures and substantially differ from the corresponding crystalline phase relative to their physicochemical prop- erties. To date, a wide group of nanocarbides of the d metals such as molecular clusters, nanocrystals, nanospheres, nanowires, nanotubes, etc., have been synthesized. Several of these new systems formed by transition metals and nitrogen or carbon have found no consensus on their crystal structure. Among all these materials, the group of platinoid nitrides and carbides attracted a particular interest due to their technological potential. Crowhurst et al. [9] in order to explain the high bulk modulus of platinum ni- trides studied the Pt–N system in the stoichiometry PtN2. They analyzed the composite in two different structures, fluorite and pyrite, and found that the most stable phase is the pyrite phase, with an internal parameter u = 0.415. © L. Mex, A. Aguayo, G. Murrieta, 2015 33801-1 http://dx.doi.org/10.5488/CMP.18.33801 http://www.icmp.lviv.ua/journal L. Mex, A. Aguayo, G. Murrieta To explore the possible existence of 5d transition-metal carbides with C/M = 2 stoichiometry in the pyrite or fluorite phases, using density functional theory, we calculated the elastic constants in both cubic phases and analyzed the performance of elastic stability criteria. 2. Methods The first-principles calculations were performed based on the density functional theory (DFT). The Kohn-Sham total energies were self-consistently calculated using the linearized augmented plane wave method (FP-LAPW) with local orbital extensions [10], as implemented in theWIEN2k [11, 12] code, where the core states are treated fully relativistically, and the semicore and valence states are computed in a scalar relativistic approximation. The exchange-correlation terms were considered in the Perdew-Burke- Ernzerhof form of the generalized gradient approximation (GGA) [13]. We have chosen the muffin-tin radii (RMT) of 2.0 a.u. for the transition metals and 1.2 a.u. for the carbon atoms. The self-consistent calculations were done with an LAPW basis set defined by the cutoff RMTKMAX=8.0. Inside the atomic spheres, the potential and charge densities are expanded in crystal harmonics up to L = 10. Convergence was assumed when the energy difference between the input and output charge densities was less than 1× 10−5 Ry. The calculations were carried out with a sufficiently large number of k points in the first Brillouin zone (BZ). We used a 13×13×13 k-point mesh, yielding a different number of k points in the irreducible wedge of the BZ depending on the structure: 256 for the fluorite, and 176 for the pyrite phase. We evaluated the structure of TMC2 (TM=Hf, Ta, W, Re, Os, Ir, Pt, and Au) in the pyrite and fluorite phase. Pyrite (FeS2 structure type) has a cubic crystal structure with space group Pa3 (205), the transition metal atoms occupying Wyckoff site 4a (0,0,0), and the carbon atoms are grouped as dimers around the fcc octahedral interstitial sites oriented in the 〈111〉 directions at 8c (u,u,u). The transition metal in the pyrite structure is fixed by symmetry but the carbon atoms have one free parameter (u) [14]. Fluorite is a particular high symmetry phase of pyrite. When the free parameter u = 0.25 at the 8c site, we obtain the fluorite (CaF2 structure type) structure with space group cF12 (225). The calculated total energy as a function of volume was fitted to the Birch–Murnaghan equation of state [15]. From this process, the equilibrium lattice constant (a) and the bulk modulos (B) were obtained. All crystals in a cubic structure have only three independent elastic constants, namely C11, C12, and C44. One can use a small strain and calculate the change of energy or stress to obtain elastic constants Ci j . In the crystal structures analyzed in this work, an external strain δ from −0.08 to + 0.08 was applied in the directions as explained by Güemez et al. [16], associated with deformations: isotropic, tetragonal and orthorhombic. ǫiso =   (1+δ)1/3 0 0 0 (1+δ)1/3 0 0 0 (1+δ)1/3   , ǫtet =    (1+δ)− 1 3 0 0 0 (1+δ)− 1 3 0 0 0 (1+δ) 2 3    , (1) ǫort =   1 δ 0 δ 1 0 0 0 1+δ 2   , to distort the lattice vectors, R′ = (1+ ǫ)R. The resulting changes of energy are associated with elastic constants, ∆Eiso = V0 2 (C11 +2C12)δ 2 = 2V0 3 Bδ 2 , ∆Etet = V0 3 (C11 −C12)δ 2 and 33801-2 Elastic properties of 5d transition-metal carbides: An ab initio study ∆Eort = 2V0C44δ 2 . In order to be mechanically stable, the elastic stiffness constants of a given crystal should satisfy the generalized elastic stability criteria [17]. The elastic stability criteria for a cubic crystal at ambient conditions are, C11 +2C12 > 0, C11 −C12 > 0, and C44 > 0, (2) i.e., all the bulk moduli (B), shear (C44), and tetragonal shear [C ′ = (C11 −C12)/2] moduli are positive. We also calculated the Young’s modulus (E ), which provides a measure of stiffness and stability of the solids. Another interesting elastic property for any applications, particularly for their anisotropy, is the Zener factor A. These quantities are calculated in terms of the computed Ci j using the following relations E = 9BG 3B +G , (3) A = C44 C ′ = 2C44 C11 −C12 , (4) where G is the isotropic shear modulus. For a cubic material with its two shear constants, C44 and C ′, the value of G should be between these two constants. Therefore, G has a unique value if C44 = C ′. This hap- pens if the material is isotropic, that is, the Zener factor is equal to one, as in the case of W. By assuming a homogeneous strain on the compound, Voigth [18] established the upper limit of G as GV= 1 5 C ′ (2+3A). (5) On the other hand, assuming a homogeneous stress, as the lower bound Reuss [19] proposes GR= 5C ′ A 3+2A . (6) In this work, we take the arithmetic average as proposed by Hill [20] G = 1 2 (GV+GR). (7) 3. Results and discussion In figure 1 we show the calculated total energy of pyrite HfC2 and AuC2 (pyrite-face) for seven values of the cell volume (open circles). The calculated total energy as a function of volume was fitted to the Birch-Murnaghan equation of state[15]. The fit is presented in figure 1 (solid line), were the energy is given with respect to the minimum energy of the pyrite structure. In order to find the value of the free parameter u in the pyrite phase, the DFT total energy and the forces acting on the atoms were optimized. Figure 2 shows the DFT total energy as a function of the free parameter u for HfC2. In this curve, we have got two local minima, one of them being observed at u = 0.25, which correspond to a possible metastable fluorite phase. At u = 0.43, there is another minimum at much lower energy, which corresponds to pyrite phase. In all the 5d transition metal carbides studied in this work, we have got the same value for the free parameter u. The difference in the energy between the two minimum phase suggests that pyrite phase should be a more stable phase at zero pressure. From the analysis of elastic stability, applying a standard set of deformations [equation (1)], we find that all compounds in fluorite phase are unstable, particularly under the tetragonal deformation, that is, the relation C11 −C12 turned out to be negative. The table 1 presents the results of our calculations for the pyrite phase. Our results demonstrate that HfC2, TaC2, WC2, IrC2, PtC2 and AuC2 aremechanically stable, while ReC2 and OsC2 violate themechanical stability conditions. In both of them, the shear modulus (C44) was negative, so the shear modulus C44 is the main constraint on stability in those compounds in the pyrite phase. As can be seen, in general it holds for pyrite phase that B >C ′ >C44 > 0. 33801-3 L. Mex, A. Aguayo, G. Murrieta Figure 1. Calculated total energies for HfC2(top) and AuC2(bottom) under isotropic deformation (circles). The energy of the pyrite phase at the equilibrium volume is the reference level, and is set to zero. The line corresponds to a fit of the Birch-Murnaghan equation of state to the calculated energy values (see text). Figure 2. Energy of HfC2 as a function of the position of C atoms (u). When u = 1/4, HfC2(pyrite) reduces to HfC2(fluorite). For all the transition metal carbides studied in this work, the second minimum was in u = 0.43 The Zener anisotropy factor A is a measure of the degree of elastic anisotropy in solids. A will take the value of 1 for a completely isotropic material. A value of A smaller or greater than unity shows the degree of elastic anisotropy. The calculated Zener anisotropy for pyrite structure (see table 1) implies that all compounds are elastically anisotropic (A <1). In order to better visualize the anisotropy of these 33801-4 Elastic properties of 5d transition-metal carbides: An ab initio study Table 1. DFT lattice constant a, zero pressure elastic constants ci j (GPa), bulk modulus B0 (GPa), shear modulus G (GPa), Zener factor A, and Young’s modulus (GPa), calculated in the present work for pyrite phase of period VI transition metal carbides. a(Å) C11 C12 C44 B0 G A E HfC2 5.34 275 127 53 176 61 0.72 158 TaC2 5.12 380 168 71 238 83 0.67 217 WC2 5.03 432 183 30 266 55 0.24 152 ReC2 4.98 Unstable Unstable Unstable 282 – – – OsC2 4.96 Unstable Unstable Unstable 286 – – – IrC2 4.95 569 133 69 279 112 0.32 289 PtC2 4.98 603 101 88 268 136 0.35 342 AuC2 5.06 445 102 116 217 135 0.68 326 compounds, we show a three-dimensional (3D) representation of Young’s modulus. For cubic crystals, the directional dependence of the Young’s modulus in 3D representation can be given by 1 E = S11 −2 ( S11 −S12 − 1 4 S44 ) ( l 2 1 l 2 2 + l 2 2 l 2 3 + l 2 3 l 2 1 ) , (8) where Si j are the elastic compliance constants, and l1, l2 and l3 are the directional cosines to the x−, y− and z−axes, respectively. In the 〈100〉 directions, the second term is zero, and for C44/C ′ < 1, a maximum in 〈100〉 directions. In all the compounds, the Zener’s coefficient was less than one, so that 〈111〉 directions are soft and 〈100〉 are hard. Three-dimensional representation of Young’s modulus is shown in figure 3. It can be seen that the elastic anisotropy increases in the direction 〈100〉 as Zener’s coefficient decreases. (a) (b) Figure 3. 3D directional dependence of the Young’s modulus for (a) AuC2 (A = 0.68) and (b) WC2 (A = 0.24). The bulk moduli follow the parabolic behavior, and increases from HfC2 to reach the maximum on IrC2. This behavior is similar to that present in the corresponding 5d transition metals. However, not all compounds, the bulk modulus increases relative to that of the pure elements, as in the case of nitrides. The values of the bulk modulus increase in: HfC2 (from 109 GPa to 176 Gpa), TaC2 (from 200 GPa to 238 GPa), PtC2 (from 230 to 268), and AuC2 (from 173 to 217). On the other hand, the other two stable 33801-5 L. Mex, A. Aguayo, G. Murrieta compounds in the pyrite phase show a decrease in the bulk modulus compared to that of pure transition metals: WC2 from 323 GPa to 266 GPa, and IrC2 from 355 GPa to 279 GPa. This same trend is followed by the Young’s modulus with an increasing value in the dicarbides with Hf, Ta, Pt and Au. The generally accepted rule is to associate hard compounds with high bulk and shear modulus values [21]. However, bulk modulus is not the only mechanical quantity that determines the utility of a mate- rial for hard coatings. Another important material property to be also considered is toughness, which is influenced by the degree of plastic deformation (ductility) of the material under mechanical loading. To analyze the ductility of the compounds, we use the Pettifor’s criterion [22, 23], which states that, for metallic non-directional bonding compounds, the Cauchy pressure (C12 −C44) value is typically positive. This region corresponds to a ductile behavior of a material. The other criterion we used was the Pugh’s modulus ratio G/B, If G/B > 0.57[24], and the materials behave in a brittle manner. In figure 4, we show the Pugh and Pettifor criteria to map the ductility and brittle behavior for pyrite phase of period VI tran- sition metal carbides. According to their formulation, the only compound which is not within the ductile region of the map is AuC2. Figure 4. Map of brittleness and ductility trends of HfC2, TaC2 , WC2 , IrC2, PtC2, and AuC2. In the figure, only the transition metal simbol is shown. 4. Conclusion In summary, we have studied metal carbides TMC2 in the fluorite and pyrite structures using first- principles calculations. With all the calculations, we conclude that all metal carbides studied with flu- orite structure are mechanically unstable. On the other hand, the pyrite phase for ReC2 and OsC2 does not meet the stability criteria as well. The bulk and Young’s moduli value increases to the value of the pure elements in HfC2, TaC2, PtC2, and Au2, but decreases in WC2 and IrC2. According to the criterion of brittleness (ductility), all compounds except AuC2 exhibit a ductility behavior. Acknowledgements The authors would like to thank Carlos Brito for helpful comments. This work was supported by Facultad deMatámaticas-UADY under Grant no. FMAT–2012–0007 and CONACyT under Grant no. 025794. 33801-6 Elastic properties of 5d transition-metal carbides: An ab initio study References 1. Seung H.J., Jisoon I., Steven G.L., Marvin L.C., Nature, 1999, 399, 367; doi:10.1038/20148. 2. Sahnoun M., Daul C., Driz M., Parlebas J.C., Demangeat C., Computational Materials Science, 2005, 33, 175; doi:10.1016/j.commatsci.2004.12.010. 3. Friedrich A., Winkler B., Juarez-Arellano E.A., Lkhamsuren B., Materials, 2011, 4, 1648; doi:10.3390/ma4101648. 4. Friedrich A., Winkler B., Bayarjargal L. Morgenroth W., Juarez-Arellano E.A. Milman V., Refson K., Kunz M., Chen K., Phys. Rev. Lett., 2010, 8, 085504; doi:10.1103/PhysRevLett.105.085504. 5. Srivastava A., Diwan B.D., Can. J. Phys., 2012, 90, 331; doi:10.1139/p2012-021. 6. Chauhan M., Gupta D.C., Diam. Relat. Mater., 2013 40, 96; doi:10.1016/j.diamond.2013.10.011. 7. Srivastava A. Chauhan M. Singh R.K., Phase Transition, 2011 84, 58; doi:10.1080/01411594.2010.509644. 8. Ono S., Kikegawa T., Ohishi Y., Solid State Commun., 2005, 133, 55; doi:10.1016/j.ssc.2004.09.048. 9. Crowhurst J.C., Goncharov A.F., Sadigh B., Evans C.L., Morrall P.G., Ferreira J.L., Nelson A.J., Science, 2006, 311, 1275; doi:10.1126/science.1121813 . 10. Singh D.J., Nordstrom L., Planewaves, Pseudopotentials and the LAPW Method, Springer, 2006; doi:10.1007/978-0-387-29684-5. 11. Blaha P., Schwarz K., Madsen G., Kvasnicka D., Luitz J., WIEN2k An Augmented PlaneWave + Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology Inst. of Physical and Theoretical Chemistry, Austria, 2013. 12. Schwarz K., Blaha P., Comp. Mater. Sci., 2003, 28, 259; doi:10.1016/S0927-0256(03)00112-5. 13. Perdew J.P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865; doi:10.1103/PhysRevLett.77.3865. 14. Birkholz M., J. Phys. Condens. Mat., 1992, 4, 6227; doi:10.1088/0953-8984/4/29/007. 15. Birch F., Phys. Rev., 1947, 71, 809; doi:10.1103/PhysRev.71.809. 16. Güemez A., Murrieta G., Aguayo A., Abstraction & Application, 2011, 4, 1. 17. Wang J., Yip S., Phillpot S.R. Wolf D., Phys. Rev. Lett., 1993, 71, 4182; doi:10.1103/PhysRevLett.71.4182. 18. Voight W., Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), Springer-Verlag, Leipzig, 1928. 19. Reuss A., Angew Z., Math. Mech., 1929, 9, 49. 20. Hill R., P. Phys. Soc. A, 1952, 65, 349; doi:10.1088/0370-1298/65/5/307. 21. Haines J., Bocquillon G., Ann. Rev. Mater. Res., 2001, 31, 1; doi:10.1146/annurev.matsci.31.1.1. 22. Pettifor D.G., Mater. Sci. Tech., 1992, 8, 345; doi:10.1179/mst.1992.8.4.345. 23. Sangiovanni D.G., Hultman L., Chirita V., Acta Mater., 2011, 59, 2121; doi:10.1016/j.actamat.2010.12.013. 24. Pugh S.F., Philos. Mag. Ser. 7, 1954, 45, 823; doi:10.1080/14786440808520496. Еластичнi властивостi карбiдiв 5d перехiдних металiв: ab initio дослiдження Л. Мекс1, А. Агуайо2, Г. Муррiета2 1 Iнженерний факультет, Автономний унiверситет Юкатану, Юкатан, Мексика 2 Факультет математики, Автономний унiверситет Юкатану, Юкатан, Мексика Проведено систематичнi дослiдження менханiчної стiйкостi карбiдiв перехiдних металiв п’ятої групи TMC2 (TM = Hf, Ta, W, Re, Os, Ir, Pt, i Au) у пiритовiй i флюоритовiй фазах шляхом обчислення їх ела- стичних сталих в рамках теорiї функцiоналу густини. Встановлено, що всi карбiди металiв, за винятком ReC2 i OsC2, є стiйкими у пiритовiй фазi. З iншого боку, всi метали карбiдiв, що вивчалися, виявилися нестiйкими у флюоритовiй фазi. Ключовi слова: першопринципнi обчислення, еластичнi стали, твердий матерiал, перехiднi метали 33801-7 http://dx.doi.org/10.1038/20148 http://dx.doi.org/10.1016/j.commatsci.2004.12.010 http://dx.doi.org/10.3390/ma4101648 http://dx.doi.org/10.1103/PhysRevLett.105.085504 http://dx.doi.org/10.1139/p2012-021 http://dx.doi.org/10.1016/j.diamond.2013.10.011 http://dx.doi.org/10.1080/01411594.2010.509644 http://dx.doi.org/10.1016/j.ssc.2004.09.048 http://dx.doi.org/10.1126/science.1121813 http://dx.doi.org/10.1007/978-0-387-29684-5 http://dx.doi.org/10.1016/S0927-0256(03)00112-5 http://dx.doi.org/10.1103/PhysRevLett.77.3865 http://dx.doi.org/10.1088/0953-8984/4/29/007 http://dx.doi.org/10.1103/PhysRev.71.809 http://dx.doi.org/10.1103/PhysRevLett.71.4182 http://dx.doi.org/10.1088/0370-1298/65/5/307 http://dx.doi.org/10.1146/annurev.matsci.31.1.1 http://dx.doi.org/10.1179/mst.1992.8.4.345 http://dx.doi.org/10.1016/j.actamat.2010.12.013 http://dx.doi.org/10.1080/14786440808520496 Introduction Methods Results and discussion Conclusion