An additive divisor problem in Z[i]
Gespeichert in:
| Datum: | 2003 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2003
|
| Schriftenreihe: | Algebra and Discrete Mathematics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/155278 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | An additive divisor problem in Z[i] / O.V. Savasrtu, P.D. Varbanets // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 103–110. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-155278 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1552782025-02-09T14:06:23Z An additive divisor problem in Z[i] Savasrtu, O.V. Varbanets, P.D. 2003 Article An additive divisor problem in Z[i] / O.V. Savasrtu, P.D. Varbanets // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 103–110. — Бібліогр.: 6 назв. — англ. 1726-3255 2001 Mathematics Subject Classification: 11N37; 11R42. https://nasplib.isofts.kiev.ua/handle/123456789/155278 en Algebra and Discrete Mathematics application/pdf Інститут прикладної математики і механіки НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| format |
Article |
| author |
Savasrtu, O.V. Varbanets, P.D. |
| spellingShingle |
Savasrtu, O.V. Varbanets, P.D. An additive divisor problem in Z[i] Algebra and Discrete Mathematics |
| author_facet |
Savasrtu, O.V. Varbanets, P.D. |
| author_sort |
Savasrtu, O.V. |
| title |
An additive divisor problem in Z[i] |
| title_short |
An additive divisor problem in Z[i] |
| title_full |
An additive divisor problem in Z[i] |
| title_fullStr |
An additive divisor problem in Z[i] |
| title_full_unstemmed |
An additive divisor problem in Z[i] |
| title_sort |
additive divisor problem in z[i] |
| publisher |
Інститут прикладної математики і механіки НАН України |
| publishDate |
2003 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/155278 |
| citation_txt |
An additive divisor problem in Z[i] / O.V. Savasrtu, P.D. Varbanets // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 103–110. — Бібліогр.: 6 назв. — англ. |
| series |
Algebra and Discrete Mathematics |
| work_keys_str_mv |
AT savasrtuov anadditivedivisorprobleminzi AT varbanetspd anadditivedivisorprobleminzi AT savasrtuov additivedivisorprobleminzi AT varbanetspd additivedivisorprobleminzi |
| first_indexed |
2025-11-26T15:29:30Z |
| last_indexed |
2025-11-26T15:29:30Z |
| _version_ |
1849867341658062848 |
| fulltext |
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.Algebra and Discrete Mathematics RESEARCH ARTICLE
Number 2. (2003). pp. 103–110
c© Journal “Algebra and Discrete Mathematics”
An additive divisor problem in Z[i]
O. V. Savasrtu and P. D. Varbanets
Communicated by V. V. Kirichenko
Abstract. Let τ(α) be the number of divisors of the Gaus-
sian integer α. An asymptotic formula for the summatory function
∑
N(α)≤x
τ(α)τ(α + β) is obtained under the condition N(β) ≤ x3/8.
This is a generalization of the well-known additive divisor problem
for the natural numbers.
1. Introduction
In 1927 A.E. Ingham [1] obtained the asymptotic formula for the number
of solutions I(x) the diophantic equation
u1u2 − v1v2 = 1
under conditions: u1, u2, v1, v2 ∈ N, u1u2 ≤ x.
Obviously
I(x) =
∑
n≤x
τ(n)τ(n + 1),
where τ(n) =
∑
n=ab
1 denote the number of ways n may be written as a
product of two natural numbers.
Ingham proved that
I(x) =
6
π2
x log2 x + O(x log x).
T. Estermann [2] improved this result in form
I(x) = xP2(log x) + E(x),
2001 Mathematics Subject Classification: 11N37; 11R42.
Key words and phrases: additive divisor problem; asymptotic formula.
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.104 An additive divisor problem in Z[i]
where P2(u) is a polynom a0u
2 + a1u + a2 and E(x) is an error term.
Estermann gave E(x) ≪ xθ+ε, θ = 11
12 . The exponent θ was sub-
sequently improved to 5
6 by D.R. Heath-Brown [3] and then to 2
3 by
J.-M. Deshouillers and H. Ivaniec [4]. In 1994 Y. Motohashi [5] em-
ployed powerful methods from the spectral theory of automorphic forms
and obtained very precise result:
I(x) =
∑
n≤x
τ(n)τ(n + h) = x
2
∑
i=0
(log x)i
2
∑
j=0
cij
∑
d|h
(log d)j
d
+ O
(
x
2
3
+ε
)
holds uniformly for 1 ≤ h ≤ x20/27.
The purpose of this paper is to build the asymptotic formula for sum
∑
α∈Z[i]
0<N(α)≤x
τ(α)τ(α + β)
where τ(α) =
∑
δ|α
1 is a number of divisors of a Gaussian integer α.
Notations. Denote by Z the ring of Gaussian integers. We write
N(α) = a2+b2, Sp(α) = 2a for α = a+bi ∈ Z[α]; ϕ(α) = N(α)
∏
p|α
(1−
N(p)−1), p is prime divisor α; e(x) = exp(2πix) for the real number x;
the Vinogradov symbol f ≪ g means f = O(g); ε is an arbitrary small
positive number that is not necessarily the same at each occurrence; the
constants implied by the O (or ≪) – notation depend at most on ε.
2. Statement of Result
Let β be Gaussian integer and x be real positive number. By I(x, β) we
denote the number of solutions in Gaussian integers of the equation
α1α2 − α3α4 = β, N(α1α1) ≤ x.
Theorem. For N(β) ≪ x3/8 and any ε > 0 the following formula
I(x, β) = xP2(log x) + O(x
7
8
+ε)
holds.
Here P2(u) = A0u
2 +A1u+A2, Ai = Ai(β), i = 0, 1, 2, moreover
Ai(β) are computable and 1 ≪ Ai(β) ≪ τ(β), A0(β) > 0.
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.O. V. Savasrtu, P. D. Varbanets 105
3. Auxiliary Results
Let δ0, δ be the Gaussian rationals (δ0, δ ∈ Q(i)) not necessarily integers.
Let for Re(s) > 1
ζ(s, δ, δ0) =
∑
ω∈Z[i]
ω 6=−δ
e
(
1
2
Sp(δ0ω)
)
N(δ + ω)−s.
Lemma 1 (see [5],lemmas 1 and 3). The function ζ(s, δ, δ0) is entire
function if δ0 6∈ Z[i]. For δ0 ∈ Z[i], ζ(s, δ, δ0) is holomorphic except at
s = 1, where it has a simple pole and
ζ(s, δ, 0) =
π
s − 1
+ a0(δ) + a1(δ)(s − 1) + . . .
where
a0(δ) =
{
πE + 4L′(1, χ4) if δ ∈ Z[i],
πE + 4L′(1, χ4) +
∑
β∈B
N(δ + β) + b0(δ) if 0 < N(δ) < 1;
E is the Euler constant, L′(s, χ4) = d
dsL(s, χ4), L(s, χ4) is L-Dirichlet
function with non-principal character mod 4; b0(δ) = −4 + O
(
N1/2(δ)
)
,
B denotes the set {0,±1,±i}. Moreover, the functional equation
π−sΓ(s)ζ(s, δ, δ0) = π−(1−s)Γ(1 − s)ζ(1 − s,−δ0, δ)e
(
−
1
2
Sp(δ0δ)
)
(1)
holds.
Let α, β, γ ∈ Z[i]. We define the Kloosterman sum for the ring of
Gaussian integer
K(α, β; γ) =
∑
ξ,ξ′(mod γ)
ξ·ξ′≡1(γ)
e
(
1
2
Sp
(
αξ + βξ′
γ
))
.
Lemma 2. Let α, β, γ be Gaussian integers, γ 6= 0. Then the estimate
|K(α, β; γ)| ≪ (N(γ)N((α, β; γ)))1/2τ(γ) (2)
holds, (where (α, β; γ) is the greate common divisor of α, β, γ). Moreover,
K(α, β; γ) =
∑
δ|(α,β,γ)
N(δ)K
(
1,
αβ
δ2
;
γ
δ
)
. (3)
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.106 An additive divisor problem in Z[i]
This lemma follow from a multiplicative property of K(α, β; γ) on γ
and the Bombieri estimate of an exponential sum on the algebraic curve
over the finite field. The formula (3) is a generalized Kuznetsov’s identity
for Kloosterman sums.
Lemma 3. Let α0, γ ∈ Z[i], (α0, γ) = β, N(β) < N(γ). Then for
N(γ) ≪ x2/3+ε we have
∑
α≡α0(γ)
N(α)≤x
τ(α) = c0(α0, γ)
x
N(γ)
log
x
N(β)
+
+ c1(α0, γ)
x
N(γ)
+ O
(
x1/2+εN(γ)−1/4
)
,
where c0(α0, γ) = π2N(β)ϕ
(
γ
β
)
N−1(γ)τ(β),
c1(α0, γ) = π2
∑
δ|β
2E − 1 + 2
L′(1, χ4)
L(1, χ4)
+
∑
p|γ/δ
∗ log
N(p)
N(p) − 1
∏
γ|γ/δ
∗(1 − N−1(p)).
Proof. Without loss of generality we will consider only a case (α0, γ) = 1.
We have for c = 1 + ε:
∑
α≡α0(γ)
N(α)≤x
τ(α) −
∑
α=α0+βγ
β∈B
τ(α) =
=
1
2πi
c+iT
∫
c−iT
F (s) −
∑
β∈B
τ(α0 + βγ)
N(α0 + βγ)s
xs
s
ds + O
(
xc
TN(γ)
)
, (4)
where
F (s) = N(γ)−2s
∑
α1,α2(mod γ)
α1α2≡α0(γ)
ζ
(
s,
α1
γ
, 0
)
ζ
(
s,
α2
γ
, 0
)
=
∑
α≡α0(γ)
α∈Z[i]
τ(α)
N(α)s
.
From lemma 1 we have the functional equation
F (s) =
π2(2s−1)
N2s(γ)
Γ2(1 − s)
Γ2(s)
Ψ(1 − s),
where
Ψ(s) =
∑
ω
1
N(ω)s
∑
αβ=ω
Φ(α, β; γ),
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.O. V. Savasrtu, P. D. Varbanets 107
Φ(α, β; γ)
∑
α1,α2(mod γ)
α1α2≡α0(γ)
e
(
1
2
Sp
(
αα1 + βα2
γ
))
.
Moreover, F (0) = 0 if N(γ) > 1 and α 6≡ 0(mod γ).
By lemma 1 we obtain
G(s) = F (s) −
∑
β∈B
τ(α0 + βγ)
N(α0 + βγ)s
≪
{
N(γ)−1+ε if Re(s) = 1 + ε,
N(γ)1/2+εT 3 if Re(s) = −1
4 .
(5)
Applying Phragmen-Lindelöf principle we infer
G(−ε + it) ≪ N(γ)1/5+εT 12/5+ε for |t| ≤ T.
To deal with integral in (4) we move the segment of integration to
Re(s) = −ε.
By the theorem of residues we obtain
∑
α≡α0(γ)
N(α)≤x
τ(α) = ress=0
(
G(s)
xs
s
)
+ ress=1
(
G(s)
xs
s
)
+
+
1
2πi
−ε+iT
∫
−ε−iT
G(s)
xs
s
ds + +O (xε) + O
(
N(γ)1/5+εT 12/5+ε
)
+
+ O
(
x1+ε
TN(γ)
)
. (6)
Further,
ress=0
(
G(s)
xs
s
)
=
π2x log x
N(γ)
∏
γ|α
(1 − N(γ)−1)+
+
π2x
N(γ)
∏
p|α
(1 − N(p)−1)
−1 + 2
E +
L′(1, χ4)
L(1, χ4)
+
∑
p|δ
log N(p)
N(p) − 1
,
(7)
ress=0
(
G(s)
xs
s
)
= ress=0
−
∑
β∈B
τ(α0 + βγ)
N(α0 + βγ)s
xs
s
≪ N(γ)ε.
Observe that by lemma 2
∑
αβ=ω
|Φ(α, β; γ)| =
∑
αβ=ω
|K(α, βα0; γ)| ≪ N(γ)1/2N((ω, γ))1/2τ(γ)τ(ω).
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.108 An additive divisor problem in Z[i]
Now by termwise integration and applying the Stirling formula for
the gamma function and the method of stationary phase we get
1
2πi
−ε+iT
∫
−ε−iT
G(s)
xs
s
ds =
=
∑
ω
0<N(ω)≤Y
π2
N(ω)
∑
αβ=ω
Φ(α, β; γ)
y3/8
4
√
2/π
e
(
−
1
8
−
1
2π
y1/4
)
·
·
(
1 + O
(
y−1/8
))
+ O
(
x1+ε
TN(γ)
)
+ O (xε)+
+ O
∑
N(ω)>Y
y−εT 1+4εN(γ)1/2+εN((ω, γ))1/2τ(ω)N(ω)−1
, (8)
where Y ≤ X =
(
4
π
)4 T 4N2(γ)
x , y = π4xN(ω)
N2(γ)
.
The assertion of the lemma follow from (4),(6)–(8) if we put
T = x1/2N(γ)−3/4, Y = x1/3.
4. Proof of the theorem
We start the proof of our theorem by observing that
τ(α) = 2#{γ|α; N(γ) ≤ x1/2} − #{γ|α; N(α)x−1/2 ≤ N(γ) ≤ x1/2}
whenever α, N(α) ≤ x.
Hence
∑
N(α)≤x
τ(α)τ(α + β) =
=
∑
N(γ)≤x1/2
2
∑
α≡β(γ)
N(α−β)≤x
τ(α) − 1
−
∑
α≡β(γ)
N(α−β)≤N(γ)x1/2
τ(α) − 1
=
= 2
∑
N(γ)≤x1/2
∑
α≡β(γ)
N(α)≤x
τ(α) −
∑
N(γ)≤x1/2
∑
α≡β(γ)
N(α)≤N(γ)x1/2
τ(α) + O(x7/8+ε)
Indeed, we have
N(α − β) = |α − β|2 ≥
∣
∣|α|2 − |β|2
∣
∣ = N(α) − N(β) for N(α) ≥ N(β),
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.O. V. Savasrtu, P. D. Varbanets 109
and
N(α − β) ≤ |α|2 + |β|2 = N(α) + N(β).
Therefore we carry an error in the asymptotic formula ≪ N(β)x1/2 ≪
x7/8 if we replace the condition N(α−β) ≤ x on the condition N(α) ≤ x
(we take into account that N(β) ≤ x3/8).
Now, by lemma 3 we obtain
∑
N(α)≤x1/2
∑
α≡β(γ)
N(α)≤x
=
∑
δ|β
∑
N(γ)≤x1/2N(δ)−1
(γ,β/δ)=1
∑
α≡β(mod γδ)
N(α)≤x
τ(α) =
=
∑
δ|β
∑
N(γ)≤x1/2
N(δ)
(γ,α0/δ)=1
{
π2x
N2(γδ)
N(δ)ϕ(γ)τ(δ)
(
log
x
N(δ)
− 1
)
+
+
2π2x
N(γ)
∑
t|δ
E +
L′(1, χ4)
L(1, χ4)
+
∑
p|γδ/t
log
N(p)
N(p) − 1
∏
p|γδ/t
(1 − N(p)−1
+
+ O
∑
δ|β
∑
N(γ)≤x1/2
N(δ)
x1/2N(γδ)−1/4
.
Using the equality
ϕ(α) = N(α)
∏
p|α
(1 − N(p)−1) = N(α)
∑
δ|α
µ(δ)
N(δ)
we infer
∑
N(α)≤x
(α,β)=1
ϕ(δ)
N(δ)
=
∑
N(α)≤x
(α,β)=1
∑
δ|α
µ(δ)
N(δ)
=
∑
N(δ)≤x
(αδ,β)=1
µ(δ)
N(δ)
∑
N(α)≤ x
N(δ)
1 =
=
∏
p|β
(1 − N(p)−1)
πx
∑
N(α)≤x
(δ,β)=1
µ(δ)
N2(δ)
+ O(x1/3)
= c0(β)x + O(x1/3). (11)
where c0(β) = c0
ϕ(β)
N(β)
∏
p|β
(1 − N(ρ)−2), c0 = const.
Therefore
∑
N(γ)≤x1/2
N(δ)
(γ,β/δ)=1
c0(β/δ)
(
log x + 1 + O
(
x1/3
))
. (12)
Jo
ur
na
l A
lg
eb
ra
D
is
cr
et
e
M
at
h.110 An additive divisor problem in Z[i]
Hence, from (10),(12), we get
∑
N(γ)≤x1/2
∑
α≡β(γ)
N(α)≤x
τ(α) = x(a0(β) log2 x+
+ a1(β) log x + a2(β)) + O(x7/8+ε). (13)
Similarly
∑
N(γ)≤x1/2
∑
α≡β(γ)
N(α)≤N(γ)x1/2
τ(α) = x(b1(β) log x + b2(β)) + O(x7/8+ε). (14)
From (9),(13),(14) we obtain the assertion of theorem.
References
[1] A.E. Ingham, Some asymptotic formulae in the theory of numbers, 2. J. London
Math. Soc. 2(1927), 202-208.
[2] T. Estermann, Über die Darstellungen einer Zahl als Differenz von zwei Producten,
J. Reine Angew. Math. 164(1931), 173-182.
[3] D.R.Heath-Brown, The divisor function d3(n) in arithmetic progression, Acta
Arithm. XLVII.1 (1986), 29-56.
[4] J.-M. Deshoillers and H. Ivaniec, An additive divisor problem, Proc. London Math.
Soc (2) 26(1982), 1-14.
[5] Y.Motohashi, The binary additive divisor problem, Ann. Sci. École Normale
Supériure (4) 27 (1994), 529-572.
[6] P.D. Vatbanets and P.A. Zarzycki, Divisors of the Gaussian integers in an Arith-
metic Progression, J. Number Theory (2) 33(1989), 152-269.
Contact information
O. V. Savasrtu ul.Dvoryanskaya 2, Dept. of computer alge-
bra and discrete mathematics, Odessa na-
tional university, Odessa 65026 Ukraine
E-Mail: prik@imem.odessa.ua
P. D. Varbanets ul.Solnechnaya 7/9 apt.18, Odessa 65009
Ukraine
E-Mail: varb@te.net.ua
Received by the editors: 22.02.2003.
|