Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I

We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect ring A as the maximal real eigen-value of its adja...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2002
Main Authors: Chernousova, Zh.T., Dokuchaev, M.A., Khibina, M.A., Kirichenko, V.V., Miroshnichenko, S.G., Zhuravlev, V.N.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2002
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155280
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155280
record_format dspace
spelling Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
2019-06-16T15:30:26Z
2019-06-16T15:30:26Z
2002
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ.
1726-3255
https://nasplib.isofts.kiev.ua/handle/123456789/155280
We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect ring A as the maximal real eigen-value of its adjacency matrix. A tiled order Λ is integral if in Λ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, in Λ = 1 if and only if Λ is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced (0, 1)-order is Gorenstein if and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where w(Λ) is a width of Λ.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
spellingShingle Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
title_short Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_full Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_fullStr Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_full_unstemmed Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
title_sort tiled orders over discrete valuation rings, finite markov chains and partially ordered sets. i
author Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
author_facet Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
publishDate 2002
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect ring A as the maximal real eigen-value of its adjacency matrix. A tiled order Λ is integral if in Λ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, in Λ = 1 if and only if Λ is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced (0, 1)-order is Gorenstein if and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where w(Λ) is a width of Λ.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155280
citation_txt Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ.
work_keys_str_mv AT chernousovazht tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT dokuchaevma tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT khibinama tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT kirichenkovv tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT miroshnichenkosg tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
AT zhuravlevvn tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsi
first_indexed 2025-12-07T17:59:38Z
last_indexed 2025-12-07T17:59:38Z
_version_ 1850873351508066304