Uniform ball structures

A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topologica...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2003
Main Author: Protasov, I.V.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2003
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155285
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155285
record_format dspace
spelling Protasov, I.V.
2019-06-16T15:32:41Z
2019-06-16T15:32:41Z
2003
Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ.
1726-3255
2001 Mathematics Subject Classification: 03E99, 54A05, 54E15.
https://nasplib.isofts.kiev.ua/handle/123456789/155285
A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support X.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Uniform ball structures
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Uniform ball structures
spellingShingle Uniform ball structures
Protasov, I.V.
title_short Uniform ball structures
title_full Uniform ball structures
title_fullStr Uniform ball structures
title_full_unstemmed Uniform ball structures
title_sort uniform ball structures
author Protasov, I.V.
author_facet Protasov, I.V.
publishDate 2003
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x. We introduce the class of uniform ball structures as an asymptotic counterpart of the class of uniform topological spaces. We show that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures closed to being metrizable, and describe the extremal elements in the classes of ball structures with fixed support X.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155285
citation_txt Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT protasoviv uniformballstructures
first_indexed 2025-12-01T15:28:32Z
last_indexed 2025-12-01T15:28:32Z
_version_ 1850860594807177216