Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям
Рассматривается первая начально-краевая задача для гиперболического уравнения с малым параметром при внешнем воздействии, описываемом некоторым случайным процессом, удовлетворяющим какому-либо из условий слабой зависимости. Производится усреднение коэффициентов по временной переменной. Предполагаетс...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 1992 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут математики НАН України
1992
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/155473 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям / Б.В. Бондарев // Український математичний журнал. — 1992. — Т. 44, № 8. — С. 1011–1020. — Бібліогр.: 8 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-155473 |
|---|---|
| record_format |
dspace |
| spelling |
Бондарев, Б.В. 2019-06-16T21:33:56Z 2019-06-16T21:33:56Z 1992 Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям / Б.В. Бондарев // Український математичний журнал. — 1992. — Т. 44, № 8. — С. 1011–1020. — Бібліогр.: 8 назв. — рос. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/155473 519.21 Рассматривается первая начально-краевая задача для гиперболического уравнения с малым параметром при внешнем воздействии, описываемом некоторым случайным процессом, удовлетворяющим какому-либо из условий слабой зависимости. Производится усреднение коэффициентов по временной переменной. Предполагается существование единственного обобщенного решения как у исходной стохастической задачи, так и у задачи с «усредненным» уравнением, которое оказывается детерминированным. Для вероятности уклонения решения исходного уравнения от решения «усредненной» задачи установлены экспоненциальные опенки типа известных неравенстве С. Н. Бернштенна для сумм независимых случайных величин. The first initial boundary value problem is considered for a hyperbolic equation with a small parameter for an external action described by some stochastic process satisfying some of the conditions of weak dependence. Averaging of the coefficients over the temporal variable is conducted. The existence is assumed of a unique generalized solution both for the initial stochastic problem and for the problem with an “averaged” equation, which turns out to be deterministic. For the probability of deviation of a solution of the initial equation from the solution of the “averaged” problem, exponential bounds are established of the type of S. N. Bernshtein inequalities for the sums of independent random variables. ru Інститут математики НАН України Український математичний журнал Статті Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям Averaging in hyperbolic systems subject to weakly dependent random perturbations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям |
| spellingShingle |
Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям Бондарев, Б.В. Статті |
| title_short |
Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям |
| title_full |
Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям |
| title_fullStr |
Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям |
| title_full_unstemmed |
Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям |
| title_sort |
усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям |
| author |
Бондарев, Б.В. |
| author_facet |
Бондарев, Б.В. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
1992 |
| language |
Russian |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Averaging in hyperbolic systems subject to weakly dependent random perturbations |
| description |
Рассматривается первая начально-краевая задача для гиперболического уравнения с малым параметром при внешнем воздействии, описываемом некоторым случайным процессом, удовлетворяющим какому-либо из условий слабой зависимости. Производится усреднение коэффициентов по временной переменной. Предполагается существование единственного обобщенного решения как у исходной стохастической задачи, так и у задачи с «усредненным» уравнением, которое оказывается детерминированным. Для вероятности уклонения решения исходного уравнения от решения «усредненной» задачи установлены экспоненциальные опенки типа известных неравенстве С. Н. Бернштенна для сумм независимых случайных величин.
The first initial boundary value problem is considered for a hyperbolic equation with a small parameter for an external action described by some stochastic process satisfying some of the conditions of weak dependence. Averaging of the coefficients over the temporal variable is conducted. The existence is assumed of a unique generalized solution both for the initial stochastic problem and for the problem with an “averaged” equation, which turns out to be deterministic. For the probability of deviation of a solution of the initial equation from the solution of the “averaged” problem, exponential bounds are established of the type of S. N. Bernshtein inequalities for the sums of independent random variables.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/155473 |
| fulltext |
0009-2
0010
0011
0012
0013
0014
0015
0016
0017
0018
|
| citation_txt |
Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям / Б.В. Бондарев // Український математичний журнал. — 1992. — Т. 44, № 8. — С. 1011–1020. — Бібліогр.: 8 назв. — рос. |
| work_keys_str_mv |
AT bondarevbv usrednenievgiperboličeskihsistemahpodveržennyhslabozavisimymslučainymvozmuŝeniâm AT bondarevbv averaginginhyperbolicsystemssubjecttoweaklydependentrandomperturbations |
| first_indexed |
2025-11-25T23:08:44Z |
| last_indexed |
2025-11-25T23:08:44Z |
| _version_ |
1850578919923646464 |