Про експоненціальну дихотомію лінійних різницевих рівнянь

У m -вимірному дійсному чи комплексному просторі Vn розглядається система лінійних різницевих рівнянь xn+1=A(n)xn, detA(n)=0 при деяких або всіх значеннях n. Для таких систем вивчається експоненціальна дихотомія. Доведено: якщо послідовність {A(n)} рекурентна чи стійка за Пуассоном у замиканні прост...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:1996
1. Verfasser: Ткаченко, В.І.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 1996
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155492
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Про експоненціальну дихотомію лінійних різницевих рівнянь / В.І. Ткаченко // Український математичний журнал. — 1996. — Т. 48, № 10. — С. 1409–1416. — Бібліогр.: 7 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:У m -вимірному дійсному чи комплексному просторі Vn розглядається система лінійних різницевих рівнянь xn+1=A(n)xn, detA(n)=0 при деяких або всіх значеннях n. Для таких систем вивчається експоненціальна дихотомія. Доведено: якщо послідовність {A(n)} рекурентна чи стійка за Пуассоном у замиканні простору зсувів, то з експоненціальної дихотомії на півосі випливає експоненціальна дихотомія на всій осі. Для майже періодичної послідовності {A(n)} доведено, що з експоненціальної дихотомії на скінченному інтервалі {k,...,k+T},k∈Z — досить велике ціле число) випливає експоненціальна дихотомія на Z. We consider a system of linear difference equationsx n+1 =A (n)xn in anm-dimensional real or complex spaceVsum with detA(n) = 0 for some or alln εZ. We study the exponential dichotomy of this system and prove that if the sequence {A(n)} is Poisson stable or recurrent, then the exponential dichotomy on the semiaxis implies the exponential dichotomy on the entire axis. If the sequence {A (n)} is almost periodic and the system has exponential dichotomy on the finite interval {k, ...,k +T},k εZ, with sufficiently largeT, then the system is exponentially dichotomous onZ.
ISSN:1027-3190