Рекурсия П. Л. Чебышева: некоторые аналитические и вычислительные аспекты

We study different algebraic and algorithmic constructions related to both an inner product on the space of polynomials defined on the real axis and the unit circle, and the Chebyshev procedure. The modern variant of the Chebyshev recursion ((m)−T-recursion) is applied to check whether Hankel and To...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:1993
Main Authors: Корж, С.А., Овчаренко, И.Е., Угриновский, Р.А.
Format: Article
Language:Russian
Published: Інститут математики НАН України 1993
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155578
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Рекурсия П. Л. Чебышева: некоторые аналитические и вычислительные аспекты / С.А. Корж, И.Е. Овчаренко, Р.А. Угриновский // Український математичний журнал. — 1993. — Т. 45, № 5. — С. 626–646. — Бібліогр.: 22 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study different algebraic and algorithmic constructions related to both an inner product on the space of polynomials defined on the real axis and the unit circle, and the Chebyshev procedure. The modern variant of the Chebyshev recursion ((m)−T-recursion) is applied to check whether Hankel and Toeplitz quadratic forms are positive definite, to determine the number of real (complex conjugate) roots of a polynomial and to localize them, to find bounds on values of a function on a given set. We also consider the relation between (m)−T-recun>ion and the method of moments in the study of Schrodinger operator with the potential of a special class.
ISSN:1027-3190