Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli

AML1 and ETO genes are known partners in the t(8,21) translocation associated with the treatment-related leukaemias in the patients receiving chemotherapy with DNA-topoisomerase II (topo II) poisons. Aim. To determine whether the genes AML1 and ETO are in close proximity either permanently or temp...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вiopolymers and Cell
Дата:2011
Автори: Rubtsov, M.A., Glukhov, S.I., Allinne, J., Pichugin, A., Vassetzky, Y.S., Razin, S.V., Iarovaia, O.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/155653
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli / M.A. Rubtsov, S.I. Glukhov, J. Allinne, A. Pichugin, Y.S. Vassetzky, S.V. Razin, O.V. Iarovaia // Вiopolymers and Cell. — 2011. — Т. 27, № 5. — С. 398-403. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155653
record_format dspace
spelling Rubtsov, M.A.
Glukhov, S.I.
Allinne, J.
Pichugin, A.
Vassetzky, Y.S.
Razin, S.V.
Iarovaia, O.V.
2019-06-17T09:51:12Z
2019-06-17T09:51:12Z
2011
Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli / M.A. Rubtsov, S.I. Glukhov, J. Allinne, A. Pichugin, Y.S. Vassetzky, S.V. Razin, O.V. Iarovaia // Вiopolymers and Cell. — 2011. — Т. 27, № 5. — С. 398-403. — Бібліогр.: 24 назв. — англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.00012D
https://nasplib.isofts.kiev.ua/handle/123456789/155653
577.218
AML1 and ETO genes are known partners in the t(8,21) translocation associated with the treatment-related leukaemias in the patients receiving chemotherapy with DNA-topoisomerase II (topo II) poisons. Aim. To determine whether the genes AML1 and ETO are in close proximity either permanently or temporarily in the nucleus. Methods. 3D FISH. Results. We found that in 5 % of untreated cells, alleles of AML1 and ETO are in close proximity. This number increased two-fold in the cells treated with the topo II poison etoposide. Surprisingly, in more than 50 % of the cases observed, co-localization of the genes occurred at the nucleoli surface. We found also that the treatment of cells triggers preferential loading of RAD51 onto bcr of the AML1 and ETO genes. Conclusions. Our results suggest that the repair of DNA lesions introduced by topoisomerase II poisons may be mediated simultaneously by multiple mechanisms, which may be the cause of mistakes resulting in translocations. Keywords: DNA-topoisomerase II, nucleoli, Rad51, AML1, ETO.
Гени AML1 і ETO відомі як партнери по транслокації t(8,21), асоційованої з розвитком вторинних лейкозів у пацієнтів, які піддавалися хіміотерапії із застосуванням інгібіторів топоізомерази II. Мета. Оцінити частоту взаємної колокалізаціїгенів AML1 і ETO у культурі лімфоїдних клітин людини. Методи. 3D FISH. Результати. У 5 % необроблених клітин лінії Jurkat алелі AML1 і ETO знаходяться в безпосередній близькості один від одного. У клітинах, оброблених інгібітором топоізомерази II етопозитом, частота подій колокалізації AML1 і ETO зростає в два рази. При цьому більш ніж у 50 % випадків колокалізація генів відбувається на поверхні ядерця. Показано, что обробка клітин етопозидом спричиняє посилення зв’язування білка RAD 51 з кластерами точок розриву (bcr) генів AML1 і ETO. Висновки. Репарація розривів ДНК, індукованих інгібіторами топоізомерази II, вірогідна за одночасної участі різних механізмів, що може бути причиною помилок, які викликають транслокації. Ключові слова: ДНК-топоізомераза II, ядерця, Rad51, AML1, ETO.
Гены AML1 и ETO известны как партнеры по транслокации t(8,21), которая ассоциирована с развитием вторичных лейкозов у пациентов, подвергшихся химиотерапии с применением ингибиторов ДНК-топоизомеразы II. Цель. Оценить частоту взаимной колокализации генов AML1 и ETO в культуре лимфоидных клеток человека. Методы. 3D FISH. Результаты. В 5 % необработанных клеток линии Jurkat аллели AML1 и ETO находятся в непосредственной близости друг от друга. В клетках, обработанных ин - гибитором ДНК-топоизомеразы II этопозидом, частота событий колокализации AML1 и ETO увеличивается в два раза. При этом в более чем 50 % наблюдаемых случаев колокализация генов происходит на поверхности ядрышка. Показано, что обработка клеток этопозидом приводит к увеличению связывания белка RAD 51 с кластерами точек разрыва (bcr) генов AML1 и ETO. Выводы. Репарация разрывов ДНК, индуцированных ингибиторами ДНК-топоизомеразы II, вероятна при одновременном участии различных механизмов, что может являться причиной ошибок, приводящих к транслокациям. Ключевые слова: ДНК-топоизомераза II, ядрышка, Rad51, AML1, ETO.
R. M. A.: MSERF (grants P1339, 16.740.11.0629), «Carl Zeiss», «Grant of the President of RF» (MK-222.2011.4), RFBR (grant 10- 04-00305-a). S. I. G.: MSERF (grant 14.740.11.1201). O. V. I. and S. V. R.: MCB grant, RFBR (grant 09-04-93105-CNRS_a). Y. S. V., J. A., A. P.: Fonda- tion de France, Canceropole de l’Ile de France, INC
en
Інститут молекулярної біології і генетики НАН України
Вiopolymers and Cell
Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
Обробка лімфоїдних клітин інгібітором топоізомерази II етопозитом спричиняє зростання колокалізації генів AML1 і ETO на поверхні ядерця
Обработка лимфоидных клеток ингибитором топоизомеразы II этопозитом приводит к возрастанию колокализации генов AML1 и ETO на поверхности ядрышка
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
spellingShingle Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
Rubtsov, M.A.
Glukhov, S.I.
Allinne, J.
Pichugin, A.
Vassetzky, Y.S.
Razin, S.V.
Iarovaia, O.V.
title_short Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
title_full Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
title_fullStr Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
title_full_unstemmed Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli
title_sort treatment of lymphoid cells with the topoisomerase ii poison etoposide leads to an increased juxtaposition of aml1 and eto genes on the surface of nucleoli
author Rubtsov, M.A.
Glukhov, S.I.
Allinne, J.
Pichugin, A.
Vassetzky, Y.S.
Razin, S.V.
Iarovaia, O.V.
author_facet Rubtsov, M.A.
Glukhov, S.I.
Allinne, J.
Pichugin, A.
Vassetzky, Y.S.
Razin, S.V.
Iarovaia, O.V.
publishDate 2011
language English
container_title Вiopolymers and Cell
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Обробка лімфоїдних клітин інгібітором топоізомерази II етопозитом спричиняє зростання колокалізації генів AML1 і ETO на поверхні ядерця
Обработка лимфоидных клеток ингибитором топоизомеразы II этопозитом приводит к возрастанию колокализации генов AML1 и ETO на поверхности ядрышка
description AML1 and ETO genes are known partners in the t(8,21) translocation associated with the treatment-related leukaemias in the patients receiving chemotherapy with DNA-topoisomerase II (topo II) poisons. Aim. To determine whether the genes AML1 and ETO are in close proximity either permanently or temporarily in the nucleus. Methods. 3D FISH. Results. We found that in 5 % of untreated cells, alleles of AML1 and ETO are in close proximity. This number increased two-fold in the cells treated with the topo II poison etoposide. Surprisingly, in more than 50 % of the cases observed, co-localization of the genes occurred at the nucleoli surface. We found also that the treatment of cells triggers preferential loading of RAD51 onto bcr of the AML1 and ETO genes. Conclusions. Our results suggest that the repair of DNA lesions introduced by topoisomerase II poisons may be mediated simultaneously by multiple mechanisms, which may be the cause of mistakes resulting in translocations. Keywords: DNA-topoisomerase II, nucleoli, Rad51, AML1, ETO. Гени AML1 і ETO відомі як партнери по транслокації t(8,21), асоційованої з розвитком вторинних лейкозів у пацієнтів, які піддавалися хіміотерапії із застосуванням інгібіторів топоізомерази II. Мета. Оцінити частоту взаємної колокалізаціїгенів AML1 і ETO у культурі лімфоїдних клітин людини. Методи. 3D FISH. Результати. У 5 % необроблених клітин лінії Jurkat алелі AML1 і ETO знаходяться в безпосередній близькості один від одного. У клітинах, оброблених інгібітором топоізомерази II етопозитом, частота подій колокалізації AML1 і ETO зростає в два рази. При цьому більш ніж у 50 % випадків колокалізація генів відбувається на поверхні ядерця. Показано, что обробка клітин етопозидом спричиняє посилення зв’язування білка RAD 51 з кластерами точок розриву (bcr) генів AML1 і ETO. Висновки. Репарація розривів ДНК, індукованих інгібіторами топоізомерази II, вірогідна за одночасної участі різних механізмів, що може бути причиною помилок, які викликають транслокації. Ключові слова: ДНК-топоізомераза II, ядерця, Rad51, AML1, ETO. Гены AML1 и ETO известны как партнеры по транслокации t(8,21), которая ассоциирована с развитием вторичных лейкозов у пациентов, подвергшихся химиотерапии с применением ингибиторов ДНК-топоизомеразы II. Цель. Оценить частоту взаимной колокализации генов AML1 и ETO в культуре лимфоидных клеток человека. Методы. 3D FISH. Результаты. В 5 % необработанных клеток линии Jurkat аллели AML1 и ETO находятся в непосредственной близости друг от друга. В клетках, обработанных ин - гибитором ДНК-топоизомеразы II этопозидом, частота событий колокализации AML1 и ETO увеличивается в два раза. При этом в более чем 50 % наблюдаемых случаев колокализация генов происходит на поверхности ядрышка. Показано, что обработка клеток этопозидом приводит к увеличению связывания белка RAD 51 с кластерами точек разрыва (bcr) генов AML1 и ETO. Выводы. Репарация разрывов ДНК, индуцированных ингибиторами ДНК-топоизомеразы II, вероятна при одновременном участии различных механизмов, что может являться причиной ошибок, приводящих к транслокациям. Ключевые слова: ДНК-топоизомераза II, ядрышка, Rad51, AML1, ETO.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/155653
citation_txt Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli / M.A. Rubtsov, S.I. Glukhov, J. Allinne, A. Pichugin, Y.S. Vassetzky, S.V. Razin, O.V. Iarovaia // Вiopolymers and Cell. — 2011. — Т. 27, № 5. — С. 398-403. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT rubtsovma treatmentoflymphoidcellswiththetopoisomeraseiipoisonetoposideleadstoanincreasedjuxtapositionofaml1andetogenesonthesurfaceofnucleoli
AT glukhovsi treatmentoflymphoidcellswiththetopoisomeraseiipoisonetoposideleadstoanincreasedjuxtapositionofaml1andetogenesonthesurfaceofnucleoli
AT allinnej treatmentoflymphoidcellswiththetopoisomeraseiipoisonetoposideleadstoanincreasedjuxtapositionofaml1andetogenesonthesurfaceofnucleoli
AT pichugina treatmentoflymphoidcellswiththetopoisomeraseiipoisonetoposideleadstoanincreasedjuxtapositionofaml1andetogenesonthesurfaceofnucleoli
AT vassetzkyys treatmentoflymphoidcellswiththetopoisomeraseiipoisonetoposideleadstoanincreasedjuxtapositionofaml1andetogenesonthesurfaceofnucleoli
AT razinsv treatmentoflymphoidcellswiththetopoisomeraseiipoisonetoposideleadstoanincreasedjuxtapositionofaml1andetogenesonthesurfaceofnucleoli
AT iarovaiaov treatmentoflymphoidcellswiththetopoisomeraseiipoisonetoposideleadstoanincreasedjuxtapositionofaml1andetogenesonthesurfaceofnucleoli
AT rubtsovma obrobkalímfoídnihklítiníngíbítoromtopoízomeraziiietopozitomspričinâêzrostannâkolokalízacíígenívaml1íetonapoverhníâdercâ
AT glukhovsi obrobkalímfoídnihklítiníngíbítoromtopoízomeraziiietopozitomspričinâêzrostannâkolokalízacíígenívaml1íetonapoverhníâdercâ
AT allinnej obrobkalímfoídnihklítiníngíbítoromtopoízomeraziiietopozitomspričinâêzrostannâkolokalízacíígenívaml1íetonapoverhníâdercâ
AT pichugina obrobkalímfoídnihklítiníngíbítoromtopoízomeraziiietopozitomspričinâêzrostannâkolokalízacíígenívaml1íetonapoverhníâdercâ
AT vassetzkyys obrobkalímfoídnihklítiníngíbítoromtopoízomeraziiietopozitomspričinâêzrostannâkolokalízacíígenívaml1íetonapoverhníâdercâ
AT razinsv obrobkalímfoídnihklítiníngíbítoromtopoízomeraziiietopozitomspričinâêzrostannâkolokalízacíígenívaml1íetonapoverhníâdercâ
AT iarovaiaov obrobkalímfoídnihklítiníngíbítoromtopoízomeraziiietopozitomspričinâêzrostannâkolokalízacíígenívaml1íetonapoverhníâdercâ
AT rubtsovma obrabotkalimfoidnyhkletokingibitoromtopoizomerazyiiétopozitomprivoditkvozrastaniûkolokalizaciigenovaml1ietonapoverhnostiâdryška
AT glukhovsi obrabotkalimfoidnyhkletokingibitoromtopoizomerazyiiétopozitomprivoditkvozrastaniûkolokalizaciigenovaml1ietonapoverhnostiâdryška
AT allinnej obrabotkalimfoidnyhkletokingibitoromtopoizomerazyiiétopozitomprivoditkvozrastaniûkolokalizaciigenovaml1ietonapoverhnostiâdryška
AT pichugina obrabotkalimfoidnyhkletokingibitoromtopoizomerazyiiétopozitomprivoditkvozrastaniûkolokalizaciigenovaml1ietonapoverhnostiâdryška
AT vassetzkyys obrabotkalimfoidnyhkletokingibitoromtopoizomerazyiiétopozitomprivoditkvozrastaniûkolokalizaciigenovaml1ietonapoverhnostiâdryška
AT razinsv obrabotkalimfoidnyhkletokingibitoromtopoizomerazyiiétopozitomprivoditkvozrastaniûkolokalizaciigenovaml1ietonapoverhnostiâdryška
AT iarovaiaov obrabotkalimfoidnyhkletokingibitoromtopoizomerazyiiétopozitomprivoditkvozrastaniûkolokalizaciigenovaml1ietonapoverhnostiâdryška
first_indexed 2025-11-26T22:59:20Z
last_indexed 2025-11-26T22:59:20Z
_version_ 1850779370879188992
fulltext Treatment of lymphoid cells with the topoisomerase II poison etoposide leads to an increased juxtaposition of AML1 and ETO genes on the surface of nucleoli M. A. Rubtsov1, S. I. Glukhov1, J. Allinne3, A. Pichugin3, Y. S. Vassetzky3, S. V. Razin1, 2, O. V. Iarovaia2 1Moscow State University 1/12, Leninskie Gory, Moscow, Russian Federation, 119899 2Institute of Gene Biology, RAS 34/5, Vavilov Str., Moscow, Russia Federation, 119334 3CNRS UMR 8126, Univ. Paris-Sud 11, IGR 39, Camille-Desmoulins Str., 94805 Villejuif, France ma_rubtsov@mail.ru AML1 and ETO genes are known partners in the t(8,21) translocation associated with the treatment-related leukaemias in the patients receiving chemotherapy with DNA-topoisomerase II (topo II) poisons. Aim. To determine whether the genes AML1 and ETO are in close proximity either permanently or temporarily in the nucleus. Methods. 3D FISH. Results. We found that in 5 % of untreated cells, alleles of AML1 and ETO are in close proximity. This number increased two-fold in the cells treated with the topo II poison etoposide. Surprisingly, in more than 50 % of the cases observed, co-localization of the genes occurred at the nucleoli surface. We found also that the treatment of cells triggers preferential loading of RAD51 onto bcr of the AML1 and ETO genes. Conclusions. Our results suggest that the repair of DNA lesions introduced by topoisomerase II poisons may be mediated simultaneously by multiple mechanisms, which may be the cause of mistakes resulting in translocations. Keywords: DNA-topoisomerase II, nucleoli, Rad51, AML1, ETO. Introduction. Chromosomal translocations are a cha- racteristic feature of leukaemia, and they are the under- lying cause in a number of cases. Translocations are a consequence of the faulty repair of double-stranded DNA breaks (DSBs) originating in the course of vari- ous physiological and pathological processes. As a ru- le, leukaemogenic translocations affect key regulators of hemopoiesis and result in the formation of chimeric genes. In some cases, oncogenesis is caused by the pro- ducts of these particular chimeric genes [1]. For the translocation between gene partners, certain conditions must be satisfied. These conditions concern both the localization of recombination partners in the nuclear space and the mode of action of DSB re- pair mechanisms. First of all, the direct contact bet- ween recombination partners should be possible and even probable. To fulfil this condition, the recombina- tion partners should be located close to each other in the nuclear space either permanently or for a conside- rable time interval. The latter may happen when the ge- nes are temporarily attracted to the same nuclear com- partment, such as a common transcription factory [2], PML bodies [3], or a hormone receptor [4]. Localiza- tion of a pair of genes in the vicinity of the nucleolus may increase the probability of illegitimate recom- bination between these genes. The nucleolus appears to 398 ISSN 0233–7657. Biopolymers and Cell. 2011. Vol. 27. N 5. P. 398–403  Institute of Molecular Biology and Genetics, NAS of Ukraine, 2011 399 TREATMENT OF LYMPHOID CELLS WITH THE TOPOISOMERASE II POISON ETOPOSIDE be a storage place for many proteins that participate in DNA repair [5, 6]; moreover, the process of sliding along the nucleolus surface may help the heterologous DNA ends, generated as a result of double-strand bre- aks, to contact one another. Alternatively, rapproche- ment between distantly located genes could be a result of fundamental changes in nuclear architecture that may occur under some special conditions. However, simple rapprochement of genes in the nuclear space do- es not result in translocation. The presence of a DSB and physical contact between broken DNA ends appe- ars to be absolutely necessary. Furthermore, the trans- location partners should be damaged simultaneously or an unrepaired DSB should persist in the nucleus for a significant period of time. This increases the proba- bility of contact between heterologous DNA ends. A DNA DSB may be repaired by two different me- chanisms [7]. In the post-replication stage, the most ef- fective mechanism is the homologous recombination (HR). HR is normally considered to be an error-free system because the undamaged sister chromatid pro- vides a perfect donor of homology [8]. In contrast to HR, the non-homologous end joining (NHEJ) system mediates direct ligation of DNA ends originating as a result of DSBs without looking for a homology donor. This system, which appears to be the main system of DSB repair in higher eukaryotes, is an error-prone sys- tem [9]. DSB repair by NHEJ often leads both to insig- nificant «misprints» in the immediate proximity of the breakpoint and to translocations of extended DNA re- gions due to the joining of «wrong» DNA ends [10]. Rapid disconnection of damaged DNA ends resulting in their separation within the nuclear space appears to be a condition for the subsequent joining of incorrect ends and therefore for a translocation event. The translocation t(8,21) between loci containing the genes AML1 and ETO is associated with the deve- lopment of acute myeloid leukaemia [11]. That is es- pecially characteristic for secondary leukaemias (t- ANLL, treatment-related leukaemia) originating as a consequence of anti-tumour chemotherapy with inhi- bitors of topo II. DSBs originating under the action of topo II poisons are distributed non-randomly in the se- quences of translocation partners, and are grouped into so-called breakpoint cluster regions – bcr [12]. The translocations leading to the formation of chimeric ge- nes, the products of which cause malignant transfor- mation and t-ANNL, occur predominantly between bcr of different genes [13]. The aim of the present work was to determine whe- ther the genes AML1 and ETO are in close proximity either permanently or temporarily in the nucleus. To this end, we assessed the degree of mutual localization between these genes and their proximity to the nucleo- lus in both normal cells and cells treated with the topo II poison etoposide. In addition, we studied the distri- bution of repair proteins that may help to establish and maintain contact between heterologous DNA ends and thereby promote the recombination between AML1 and ETO. Materials and methods. Cell culture and slide pre- paration. A culture of Jurkat cells was received from the Institute of Medical Genetics RAMS. The cells we- re grown in RPMI with 10 % FBS at 37 °C in a 5 % CO2. In the experiments with etoposide, the Jurkat cells were incubated for 1.5 h in the presence of 0.17 mM etoposide. Cells were attached to slides using Cell- Tak™ («BD Bioscience»). The slides were incubated for 1 min in 0.3 × PBS, fixed immediately in 4 % para- formaldehyde in 0.3 × PBS (pH 7.4) for 10 min at RT and washed in 1 × PBS. The cells were permeabilized at RT in 0.5 % (w/v) Triton X-100 in 1 × PBS for 10 min, incubated for 1 h in 20 % (v/v) glycerol in 1 × PBS followed by freezing-thawing in liquid nitrogen and washing in 1 × PBS. Cells were treated with 0.1 M HCl for 20 min at RT, washed in 1 × PBS, treated with RNAseA in 2 × SSC (200 µg/ml) for 30 min at 37 oC, washed with 2 × SSC and equilibrated in 50 % (v/v) deionized formamide in 2 × SSC for at least 2 h. The prepared slides were used immediately or stored at 4 oC for up to two weeks. Visualization of the AML1 and ETO genes and nuc- leoli via 3D fluorescence in situ hybridization (3D FISH). The DNA in cells fixed on microscope slides was denatured in 70 % (v/v) deionized formamide in 2 × × SSC for 16 min at 75°C. One microliter of Vysis® LSI® AML1/ETO Dual Color, Dual Fusion Translocation Probe («Abbott Lab.») was mixed with 4 µl of Vysis® hybridization buffer, and the mixture was incubated for 5 min at 74 oC. Then the mixture was applied to the hot slides, and hybridization was carried out overnight at 37 oC (in a humid chamber).Then the samples were washed for 30 min in 50 % (v/v) formamide in 2 × SSC at 52 oC, for 10 min in 0.2 × SSC at 52 oC, for 5 min in 0.1 % (v/v) NP-40 in 2 × SSC at 52 oC and finally for 3 min in 2 × SSC at RT. To visualize nucleoli, mouse monoclonal anti-nuc- leophosmin antibody («Chemicon Int.») was used with subsequent signal acquisition via an Alexa 647-con- jugated chicken anti-mouse antibody («Mol. Probes»). In all cases, DNA was counterstained with DAPI. Immunostaining. Cells were precipitated to micro- scope slides using cytospin (0.5 million cells per slide), fixed (1 % paraformaldehyde, 2.5 % Triton-X100, 10 mM Pipes (pH 6.9), 100 mM NaCl, 1.5 mM MgCl2, 300 mM Sucrose) for 20 min at RT and washed in 1 × × PBS. Then treated with blocking reagent solution (BR, «Roche») for 1 h at RT and incubated with prima- ry antibody (dilution 1:50 (v/v) in BR) overnight at 4 oC. Then, the preparations were washed in washing solution (1 × PBS, 0.25 % BSA, 0.05 % Tween 20), in- cubated with secondary antibody (dilution 1:200 (v/v) in BR) for 30 min at RT, washed in washing solution, rinsed with 1 × PBS and counterstained with DAPI. The antibodies used: mouse monoclonal anti-nucleophos- min antibody («Chemicon Int.»), mouse monoclonal an- ti-fibrillarin antibody (Abcam) and Alexa 488-conju- gated rabbit anti-mouse antibody («Mol. Probes»). Chromatin immunoprecipitation and real-time PCR. Chromatin immunoprecipitation was performed as described previously [14]. Rabbit anti-nucleolin antibody («Sigma») and rabbit anti-Rad51 antibody («Sigma») were used. The amount of DNA bound to nucleolin or to Rad51 before and after etoposide treat- ment was determined by real-time PCR with the follo- wing primers and TaqMan probes (FAM – a fluores- cent dye at the 5' end of samples; BHQ-1 – fluorescence quencher in the probe on T): AML1_BCR3_direct: 5'CCAGCCCACAACAGG AGAC3'; AML1_BCR3_reverse: 5'ATACTTCTGAG GGAAAGGGATG3; AML1_exon_5_direct: 5'TTCCTGCCTTCATTC TCTGC3; AML1_exon_5_reverse: 5'TGTCCCCAAA AGCCAAGAT3'; ETO_BCR2_direct: 5'TCTGATAGTGCCAATG CCTTTA3'; ETO_BCR2_reverse: 5'CTTGCTAGTG CCTATGTAGGAATCT3'; ETO_exon_1a_direct: 5'GCATCCTTGAATCCA GCGTA3'; ETO_exon_1a_reverse: 5'CCTCCACATT TCTGCTCCAA3'; AML1_BCR3: 5'(FAM)CGCAAACAGCCT (BH Q-1)GAGTCACGCA3'; AML1_exon_5: 5'(FAM)AA GAGGAAAGT(BHQ-1)GAGGTTCAGCAAGGC3'; ETO_BCR2: 5'(FAM)TTCATTTCCACCAACT (BHQ-1)TATTTTCAACGTCT3'; ETO_exon_1a: 5'(F AM)TGGAATGAGT(BHQ-1)GGCAGCAGAGAGG A3'. Amplification was performed in 20 µl of PCR buf- fer (50 mM Tris (pH 8.6), 50 mM KCl, 1.5 mM MgCl2, and 0.1 % Tween 20) containing test DNA, 0.5 µM each primer, 0.25 µM TaqMan probe, 0.2 mM each dNTP and 0.75 units of hot-start Taq DNA polymerase («Sibenzyme»). Conditions: at 94 oC for 5 min (one cycle); and 94 oC for 15 s, 60 oC for 60 s, fluorescence detection (49 cycles). The results were analysed using Opticon Monitor 3.1 («Bio-Rad Lab»). Results and discussion. Analysis of the mutual lo- calization of the AML1 and ETO genes in the nucleus. We first studied the mutual localization of the AML1 and ETO genes in nuclear space in cells under normal conditions and in cells treated with the topo II poison etoposide. The 3D immuno-FISH technique was emplo- yed in these experiments using commercially available fluorescent probes, regularly used in clinical practice for analysis and diagnosis of t(8;21) translocations in leukaemia. We were particularly interested in enume- rating the cases where AML1 and ETO loci are in con- tact with each other. In addition, the relative positions of these loci with respect to the nucleolus were re- gistered. The FISH results were analysed using an LSM 510 («Carl Zeiss, Inc.») confocal microscope. Confocal sec- tions of the cells under study were processed using ZEN 2009 LE software («Carl Zeiss, Inc.») to make 3D reconstructions. Typical examples of the 3D recon- structions showing various juxtapositions of the AML1 and ETO genes together with the nucleolus are presen- ted in Fig. 1, A–C (see inset). In Fig. 1, A, the situation is shown where one of the AML1 alleles is located very close to one of the ETO alleles (the signals touch each other but do not overlap). In Fig. 1, B, the situation is shown where AML1 and ETO alleles touch each other and the surface of the nucleolus. Finally, in Fig. 1, C, the situation is shown where all the AML1 and ETO al- leles are located at a considerable distance from one another. The results of an analysis are presented in a table (Fig. 1, D, see inset). To characterize the mutual localization of these ge- nes, we used the open-source software NEMO (an up- graded version of the well known ImageJ plug-in «Smart 3D-FISH»). NEMO is designed to detect auto- matically various objects (e. g., spots, genes, nuclei or chromosomal regions) located in individual cells and to analyse the distances between these objects [15]. We defined hybridization signals as being in close vicinity (or in contact as shown in Fig. 1, A1) in cases where the 400 RUBTSOV M. A. ET AL. ISSN 0233–7657. Biopolymers and Cell. 2011. Vol. 27. N 5 Fig. 1. Three distinct juxtapositions ob- served during mutual localization ana- lysis of the genes AML1 and ETO and nucleoli inside Jurkat cell nuclei. Blue – nucleoli immunostained for nucleophos- min (B23), green and red – hybridizati- on signals corresponding to AML1 and ETO genes, respectively. Bar: 5 µm. For each case, three projections of the 3D model are shown. A – AML1 and ETO are in contact with each other but not with a nucleolus; B – AML1 and ETO are in contact with each other and with a nucleolus (A1, B1 – scaled-up excisi- ons); C – AML1 and ETO are distant from each other; D – results of signal counting. In the line designated «Etopo- side» the results of counting signals in etoposide-treated cells are presented. Gi- ven results represent an aggregated va- lues obtained in three independent ex- periments having total samplings indica- ted in «Number of signals» column. All the values expressed as a percentage pos- sess standard error (SE) of less than 0.85 % Phase contrast B 23 Merge Phase contrast Fibrillarin Merge A B Fig. 2. Immunostaining of Jurkat cells using antibodies against nucleolin (A) and fibrillarin (B) is shown. Nucleolar extrusion from the nuclei of cells treated with etoposide (Etoposide) is ap- parent. Staining of nucleoli with the same antibodies in non- treated cells (Control) is shown for a comparison. Bar: 5 µm Figures to article by M. A. Rubtsov et al. estimated NEMO «colocalization percentage» (which the authors define as «the percentage of the smallest ob- ject into the biggest object colocalization») was more than 1 %. To this end it should be mentioned that we ha- ve never observed significant overlapping of the AML1 and ETO signals. In our case it has never exceeded 5 %. In spite of its peri-telomeric position in chromosome 21, at least one AML1 signal was located at the surface of one of the nucleoli in 55 % of cells. An analysis of the spatial distribution showed that almost 5 % of all the AML1 and ETO hybridization signals were located in close proximity (Fig. 1, A1). Furthermore, almost half of the juxtaposed AML1 and ETO signals were located at the border of the nucleolus (Fig. 1, B1). We demonstrated previously that treatment of pri- mary human fibroblasts with etoposide causes reloca- tion of the ETO gene in nuclear space [16]. As a result of this relocation, the average distance between AML1 and ETO alleles decreased. However, in this previous work, we did not observe the cases in which AML1 and ETO alleles were in direct contact. Perhaps this does not happen in primary fibroblasts. In the present work, we performed the same analysis using human lympho- id cells (Jurkat). Remarkable rapprochement of the AML1 and ETO genes occurred after treatment of the cells with etoposide. The percentage of juxtaposed AML1 and ETO signals doubled as a result of etoposide treatment, reaching almost 10 % of the total number of calculated signals (Fig. 1, D). The number of juxtapo- sed AML1 and ETO alleles located on the surface of nuc- leoli increased approximately three-fold (Fig. 1, D). Role of the nucleolus in the rapprochement of the AML1 and ETO genes induced by etoposide. In hu- mans, AML1 is located on chromosome 21, which har- bours a nucleolar organizer. Thus, the relocation of AML1 in nuclear space may be a consequence of nucleo- lar relocation. In this regard, it may be of importance that treating cells with etoposide causes the extrusion of the nucleolus beyond the border of the nucleus, as shown in Fig. 2 (see inset). We treated Jurkat cells with etoposide and then fixed and stained them with anti- bodies against nucleophosmin and fibrillarin. This reve- aled that nucleoli are extruded from the cells treated with etoposide. The nucleolar extrusion is likely to oc- cur when the apoptotic program is triggered. However, reversion is still likely to be possible during the initial steps of this program. To this end, it should be noted that under conditions of cell treatment used in our expe- riments a complete extrusion of nucleoli was observed only in a very small portion of cells. In control expe- riment, when after 1.5 h treatments with etoposide the cells were placed in a fresh medium without etoposide, the population continued to grow (not shown). None- theless, the movement of nucleoli toward the nuclear pe- riphery may constitute a driving force for the repositio- ning of AML1 from the central to the peripheral part of the nucleus. It has been shown before that treatment of cells with other cytotoxic agents also causes nucleolar extrusion without separation of the nucleolus from the surrounding chromatin layer [17]. Thus, under certain conditions, the nucleolus may serve as a «carrier» that conveys proximal genes (including AML1) to the peri- phery, where ETO is predominantly located. One of the major nucleolar proteins is nucleolin. In addition to participating in the biogenesis of riboso- mes, nucleolin performs many other functions, being involved in the regulation of cell growth and prolife- ration, stress responses, DNA replication and repair [18]. Taking into account the fact that AML1 and ETO alleles were frequently observed to be in close proximi- ty on the nucleoli, we looked for association of nucleo- lin with the bcr of AML1 and ETO. Using the chromatin IP approach, we found that nucleolin interacts not only with the bcr of both AML1 and ETO but also with other regions of these genes. Moreover, the degree of association between nucleolin and both AML1 and ETO increased two-fold in respon- se to etoposide treatment (data not shown). One can speculate that this increased association of both ETO and AML1 with nucleolin after etoposide treatment con- tributes to their retention at the border of the nucleolus and increases the probability that these heterologous DNA ends would interact. Direct participation of nucleolin in the repair of DSBs (including those introduced by topo II) should not be ruled out. Nucleolin interacts with a variety of proteins that participate in the repair, replication and re- combination of DNA, and it possesses helicase, strand- annealing and strand-pairing activities [18]. It has been previously shown that electroporation of antibodies against nucleolin into cells increases their sensitivity to the topoisomerase poison amsacrine [19]. Increased association of RAD51 with both AML1 and ETO in cells treated with etoposide. We have pre- viously demonstrated that stalled topo II complexes are recognized by cells as DSB and are repaired via NHEJ [20]. Moreover, we have found that treating cells with etoposide caused the proteins mediating NHEJ to 401 TREATMENT OF LYMPHOID CELLS WITH THE TOPOISOMERASE II POISON ETOPOSIDE accumulate at the bcr of both AML1 and ETO [21]. DSB repair by NHEJ is accompanied by numerous mis- takes that may be a cause of translocations. However, the participation of the HR pathway in the repair of DNA DSB caused by inhibitors of topo II ligation should not be ruled out. HR mechanisms can facilitate replication fork passage of the damaged region and the resumption of normal replication [22]. One of the key players in the HR repair system is RAD51 [23]. RAD51 forms a complex with DNA close to breakpoints [24]. We analysed the level of association between RAD51 and the bcr of both AML1 and ETO in control cells and cells treated with etoposide. The results obtained (Fig. 3) allowed us to conclude that treatment of cells with etoposide results in a significant (up to 100 fold) increase in the levels of association between RAD51 and all the loci, and this effect was especially prominent at the bcr. Thus, HR may participate in the repair of topo II induced DSB. In this regard, it may be of interest that the bcr of AML1 and ETO possess relatively long (up to 17 bp) regions of homology that may be «considered» as homology donors by the HR re- pair mechanism, resulting in the joining of heterolo- gous chromosomal fragments and the generation of a leukaemogenic chimeric gene. Whatever the reason for the recruitment of RAD51 to bcr in the cells treated with topo II poisons, this re- cruitment is likely to destabilize these regions in con- junction with the topo II-mediated DSB and collapsed replication forks. Consequently, the mobilization of broken DNA ends is likely to occur there. Indeed, the normal function of RAD51 is to form a filament with single-stranded DNA and to invade undamaged homo- logous sister chromatids. In the conditions when recom- bination partners are in close proximity, their simulta- neous damaging and simultaneous destabilization of breaks may increase the probability of translocations between them. A search for the homologous sequences carried out by RAD51 in complex with DNA may faci- litate the rapprochement of heterologous DNA ends, and the presence of microhomologies increases the pro- bability of translocations. The observations presented allow one to propose a prospective way to prevent leukaemogenic translocati- ons, in particular by using chemotherapeutic agents which does not lead to significant changes in nuclear archi- tecture. In case of topo II poisons, it should be those that do not cause accumulation of topo II stalled complexes. Acknowledgments. R. M. A.: MSERF (grants P1339, 16.740.11.0629), «Carl Zeiss», «Grant of the President of RF» (MK-222.2011.4), RFBR (grant 10- 04-00305-a). S. I. G.: MSERF (grant 14.740.11.1201). O. V. I. and S. V. R.: MCB grant, RFBR (grant 09-04-93105-CNRS_a). Y. S. V., J. A., A. P.: Fonda- tion de France, Canceropole de l’Ile de France, INCa. М. А. Руб цов, С. І. Глу хов, Ж. Аллінне, А. Пічугін, Є. С. Ва сець кий, С. В. Разін, О. В. Яро ва Оброб ка лімфої дних клітин інгібіто ром топоізо ме ра зи II ето по зи том спри чи няє зрос тан ня ко ло калізації генів AML1 і ETO на по верхні ядер ця Ре зю ме Гени AML1 і ETO відомі як пар тне ри по транс ло кації t(8,21), асоційо ва ної з роз вит ком вто рин них лей козів у пацієнтів, які під- да ва ли ся хіміот е рапії із за сто су ван ням інгібіторів топоізо ме ра - зи II. Мета. Оцінити час то ту взаємної ко ло калізації генів AML1 і ETO у куль турі лімфої дних клітин лю ди ни. Ме то ди. 3D FISH. Ре - зуль та ти. У 5 % не об роб ле них клітин лінії Jurkat алелі AML1 і ETO зна хо дять ся в без по се редній близь кості один від од но го. У кліти нах, об роб ле них інгібіто ром топоізо ме ра зи II ето по зи том, час то та подій ко ло калізації AML1 і ETO зрос тає в два рази. При цьо му більш ніж у 50 % ви падків ко ло калізація генів відбу вається на по верхні ядер ця. По ка за но, что об роб ка клітин ето по зи дом спри чи няє по си лен ня зв’я зу ван ня білка RAD 51 з клас те ра ми то - чок роз ри ву (bcr) генів AML1 і ETO. Вис нов ки. Ре па рація роз ривів ДНК, інду ко ва них інгібіто ра ми топоізо ме ра зи II, вірогідна за од - но час ної участі різних ме ханізмів, що може бути при чи ною по - ми лок, які вик ли ка ють транс ло кації. Клю чові сло ва: ДНК-топоізо ме ра за II, ядер ця, Rad51, AML1, ETO. 402 RUBTSOV M. A. ET AL. 0 2 0 4 0 6 0 8 0 1 0 0 1 2 3 4 BCR3 BCR2 BCR1 Exon 5 Exon 1 a BCR3 BCR2 25 kbp 10 kbp AML1 ETO A B Fig. 3. Increased association of RAD51 with AML1 and ETO after treat- ment of cells with etoposide: A – map of the genomic regions under stu- dy showing positions of test amplicons (vertical lines with asterisks); B – a diagram illustrating the results of ChIP with antibodies against Rad51 (fold-enrichment of DNA fragments containing test-amplicons in immunoprecipitated material obtained from cells treated with etopo- side relative to that in material from untrea ted cells). 1-AML1-BCR3: 2-AMl1-exon5 3-ETO-BCR2 4-ETO-exon1a. Bars represent the stan- dard deviation М. А. Руб цов, С. И. Глу хов, Ж. Аллинне, А. Пи чу гин, Е. С. Ва сец кий, С. В. Ра зин, О. В. Яро вая Обра бот ка лим фо ид ных кле ток ин ги би то ром то по и зо ме ра зы II это по зи том при во дит к воз рас та нию ко ло ка ли за ции ге нов AML1 и ETO на по вер хнос ти яд рыш ка Ре зю ме Гены AML1 и ETO из вес тны как пар тне ры по транс ло ка ции t(8,21), ко то рая ас со ци и ро ва на с раз ви ти ем вто рич ных лей ко зов у па ци ен тов, под вер гших ся хи ми о те ра пии с при ме не ни ем ин ги би - то ров ДНК-то по и зо ме ра зы II. Цель. Оце нить час то ту вза им ной ко ло ка ли за ции ге нов AML1 и ETO в куль ту ре лим фо ид ных кле ток че ло ве ка. Ме то ды. 3D FISH. Ре зуль та ты. В 5 % не об ра бо тан- ных кле ток ли нии Jurkat ал ле ли AML1 и ETO на хо дят ся в не пос ред- ствен ной бли зос ти друг от дру га. В клет ках, об ра бо тан ных ин - ги би то ром ДНК-то по и зо ме ра зы II это по зи дом, час то та со бы - тий ко ло ка ли за ции AML1 и ETO уве ли чи ва ет ся в два раза. При этом в бо лее чем 50 % на блю да е мых слу ча ев ко ло ка ли за ция ге нов про ис хо дит на по вер хнос ти яд рыш ка. По ка за но, что об ра бот ка кле ток это по зи дом при во дит к уве ли че нию свя зы ва ния бел ка RAD 51 с клас те ра ми то чек раз ры ва (bcr) ге нов AML1 и ETO. Вы - во ды. Ре па ра ция раз ры вов ДНК, ин ду ци ро ван ных ин ги би то ра ми ДНК-то по и зо ме ра зы II, ве ро ят на при од но вре мен ном учас тии раз лич ных ме ха низ мов, что мо жет яв лять ся при чи ной оши бок, при во дя щих к транс ло ка ци ям. Клю че вые сло ва: ДНК-то по и зо ме ра за II, яд рыш ка, Rad51, AML1, ETO. REFERENCES 1. Gollin S. M. Mechanisms leading to nonrandom, nonhomologo- us chromosomal translocations in leukemia // Semin. Cancer. Biol.–2007.–17, N 1.–P. 74–79. 2. Osborne C. S., Chakalova L., Mitchell J. A., Horton A., Wood A. L., Bolland D. J., Corcoran A. E., Fraser P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh // PLoS Biol.–2007.–5, N 8.–e192.–P. 1763–1772. 3. Lallemand-Breitenbach V., de The H. PML nuclear bodies // Cold Spring Harb. Perspect. Biol.–2010.–2, N 5.–a000661.–P. 1–17. 4. Lin C., Yang L., Tanasa B., Hutt K., Ju B. G., Ohgi K., Zhang J., Rose D. W., Fu X. D., Glass C. K., Rosenfeld M. G. Nuclear re- ceptor-induced chromosomal proximity and DNA breaks under- lie specific translocations in cancer // Cell.–2009.–139, N 6.– P. 1069–1083. 5. Boisvert F. M., van Koningsbruggen S., Navascues J., Lamond A. I. The multifunctional nucleolus // Nat. Rev. Mol. Cell Biol.– 2007.–8, N 7.–P. 574–585. 6. Boulon S., Westman B. J., Hutten S., Boisvert F. M., Lamond A. I. The nucleolus under stress // Mol. Cell.–2010.–40, N 2.– P. 216–227. 7. Shrivastav M., De Haro L. P., Nickoloff J. A. Regulation of DNA double-strand break repair pathway choice // Cell Res.–2008.–18, N 1.–P. 134–147. 8. Bernstein K. A., Rothstein R. At loose ends: resecting a double- strand break // Cell.–2009.–137, N 5.–P. 807–810. 9. Lieber M. R., Gu J., Lu H., Shimazaki N., Tsai A. G. Nonhomolo- gous DNA end joining (NHEJ) and chromosomal translocations in humans // Subcell. Biochem.–2010.–50.–P. 279–296. 10. Heisig P. Type II topoisomerases–inhibitors, repair mechanisms and mutations // Mutagenesis.–2009.–24, N 6.–P. 465–469. 11. Nucifora G., Rowley J. D. AML1 and the 8;21 and 3;21 translo- cations in acute and chronic myeloid leukemia // Blood.–1995.– 86, N 1.–P. 1–4. 12. Miyoshi H., Shimizu K., Kozu T., Maseki N., Kaneko Y., Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leuke- mia are clustered within a limited region of a single gene, AML1 // Proc. Natl Acad. Sci. USA.–1991.–88, N 23.–P. 10431–14034. 13. Tighe J. E., Daga A., Calabi F. Translocation breakpoints are clustered on both chromosome 8 and chromosome 21 in the t(8; 21) of acute myeloid leukemia // Blood.–1993.–81, N 3.–P. 592– 596. 14. Medeiros R. B., Papenfuss K. J., Hoium B., Coley K., Jadrich J., Goh S. K., Elayaperumal A., Herrera J. E., Resnik E., Ni H. T. Novel sequential ChIP and simplified basic ChIP protocols for promoter co-occupancy and target gene identification in human embryonic stem cells BMC // Biotechnol.–2009.–9.–P. 59. 15. Iannuccelli E., Mompart F., Gellin J., Lahbib-Mansais Y., Yerle M., Boudier T. NEMO: a tool for analyzing gene and chromoso- me territory distributions from 3D-FISH experiments // Bioinfor- matics.–2010.–26, N 5.–P. 696–697. 16. Rubtsov M. A., Terekhov S. M., Razin S. V., Iarovaia O. V. Repo- sitioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II // J. Cell Biochem.–2008.–104, N 2.– P. 692–699 17. Pellicciari C., Bottone M. G., Scovassi A. I., Martin T. E., Big- giogera M. Rearrangement of nuclear ribonucleoproteins and ex- trusion of nucleolus-like bodies during apoptosis induced by hy- pertonic stress // Eur. J. Histochem.–2000.–44, N 3.–P. 247–254. 18. Mongelard F., Bouvet P. Nucleolin: a multiFACeTed protein // Trends Cell Biol.–2007.–17, N 2.–P. 80–86. 19. De A., Donahue S. L., Tabah A., Castro N. E., Mraz N., Cruise J. L., Campbell C. A novel interaction [corrected] of nucleolin with Rad51 // Biochem. Biophys. Res. Commun.–2006.–344, N 1.– P. 206–213. 20. Kantidze O. L., Iarovaia O. V., Razin S. V. Assembly of nuclear matrix-bound protein complexes involved in non-homologous end joining is induced by inhibition of DNA topoisomerase II // J. Cell Physiol.–2006.–207, N 3.–P. 660–667. 21. Kantidze O. L., Iarovaia O. V., Philonenko E. S., Yakutenko I. I., Razin S. V. Unusual compartmentalization of CTCF and other transcription factors in the course of terminal erythroid dif- ferentiation // Biochim. Biophys. Acta.–2007.–1773, N 6.– P. 924–933. 22. Lambert S., Mizuno K., Blaisonneau J., Martineau S., Chanet R., Freon K., Murray J. M., Carr A. M., Baldacci G. Homologo- us recombination restarts blocked replication forks at the expen- se of genome rearrangements by template exchange // Mol. Cell.– 2010.–39, N 3.–P. 346–359. 23. Li X., Heyer W. D. Homologous recombination in DNA repair and DNA damage tolerance // Cell Res.–2008.–18, N 1.–P. 99– 113. 24. Rodrigue A., Lafrance M., Gauthier M. C., McDonald D., Hendzel M., West S. C., Jasin M., Masson J. Y. Interplay bet- ween human DNA repair proteins at a unique double-strand break in vivo // EMBO J.–2006.–25, N 1.–P. 222–231. UDC 577.218 Received 01.06.11 403 TREATMENT OF LYMPHOID CELLS WITH THE TOPOISOMERASE II POISON ETOPOSIDE