N – real fields
A field F is n-real if −1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank (AAt ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2003 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2003
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/155693 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | N – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | A field F is n-real if −1 is not the sum of n
squares in F. It is shown that a field F is m-real if and only
if rank (AAt
) = rank (A) for every n × m matrix A with entries
from F. An n-real field F is n-real closed if every proper algebraic
extension of F is not n-real. It is shown that if a 3-real field F
is 2-real closed, then F is a real closed field. For F a quadratic
extension of the field of rational numbers, the greatest integer n
such that F is n-real is determined.
|
|---|---|
| ISSN: | 1726-3255 |