On check character systems over quasigroups and loops

In this article we study check character systems that is error detecting codes, which arise by appending a check digit an to every word a₁a₂...an₋₁ : a₁a₂...an₋₁ → a₁a₂...an₋₁an with the check formula (...((a₁ · δa₂) · δ ²a₃)...) · δ ⁿ⁻²an₋₁) · δ ⁿ⁻¹an = c, where Q(·) is a quasigroup or a loop, δ is...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2003
Main Author: Belyavskaya, G.B.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2003
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155694
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On check character systems over quasigroups and loops / G.B. Belyavskaya // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 1–13. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In this article we study check character systems that is error detecting codes, which arise by appending a check digit an to every word a₁a₂...an₋₁ : a₁a₂...an₋₁ → a₁a₂...an₋₁an with the check formula (...((a₁ · δa₂) · δ ²a₃)...) · δ ⁿ⁻²an₋₁) · δ ⁿ⁻¹an = c, where Q(·) is a quasigroup or a loop, δ is a permutation of Q, c ∈ Q. We consider detection sets for such errors as transpositions (ab → ba), jump transpositions (acb → bca), twin errors (aa → bb) and jump twin errors (aca → bcb) and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types.
ISSN:1726-3255