On check character systems over quasigroups and loops

In this article we study check character systems that is error detecting codes, which arise by appending a check digit an to every word a₁a₂...an₋₁ : a₁a₂...an₋₁ → a₁a₂...an₋₁an with the check formula (...((a₁ · δa₂) · δ ²a₃)...) · δ ⁿ⁻²an₋₁) · δ ⁿ⁻¹an = c, where Q(·) is a quasigroup or a loop, δ is...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2003
Main Author: Belyavskaya, G.B.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2003
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155694
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On check character systems over quasigroups and loops / G.B. Belyavskaya // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 1–13. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155694
record_format dspace
spelling Belyavskaya, G.B.
2019-06-17T10:47:49Z
2019-06-17T10:47:49Z
2003
On check character systems over quasigroups and loops / G.B. Belyavskaya // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 1–13. — Бібліогр.: 9 назв. — англ.
1726-3255
2001 Mathematics Subject Classification: 20N05, 20N15, 94B60, 94B65.
https://nasplib.isofts.kiev.ua/handle/123456789/155694
In this article we study check character systems that is error detecting codes, which arise by appending a check digit an to every word a₁a₂...an₋₁ : a₁a₂...an₋₁ → a₁a₂...an₋₁an with the check formula (...((a₁ · δa₂) · δ ²a₃)...) · δ ⁿ⁻²an₋₁) · δ ⁿ⁻¹an = c, where Q(·) is a quasigroup or a loop, δ is a permutation of Q, c ∈ Q. We consider detection sets for such errors as transpositions (ab → ba), jump transpositions (acb → bca), twin errors (aa → bb) and jump twin errors (aca → bcb) and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On check character systems over quasigroups and loops
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On check character systems over quasigroups and loops
spellingShingle On check character systems over quasigroups and loops
Belyavskaya, G.B.
title_short On check character systems over quasigroups and loops
title_full On check character systems over quasigroups and loops
title_fullStr On check character systems over quasigroups and loops
title_full_unstemmed On check character systems over quasigroups and loops
title_sort on check character systems over quasigroups and loops
author Belyavskaya, G.B.
author_facet Belyavskaya, G.B.
publishDate 2003
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this article we study check character systems that is error detecting codes, which arise by appending a check digit an to every word a₁a₂...an₋₁ : a₁a₂...an₋₁ → a₁a₂...an₋₁an with the check formula (...((a₁ · δa₂) · δ ²a₃)...) · δ ⁿ⁻²an₋₁) · δ ⁿ⁻¹an = c, where Q(·) is a quasigroup or a loop, δ is a permutation of Q, c ∈ Q. We consider detection sets for such errors as transpositions (ab → ba), jump transpositions (acb → bca), twin errors (aa → bb) and jump twin errors (aca → bcb) and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155694
citation_txt On check character systems over quasigroups and loops / G.B. Belyavskaya // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 1–13. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT belyavskayagb oncheckcharactersystemsoverquasigroupsandloops
first_indexed 2025-12-07T17:36:12Z
last_indexed 2025-12-07T17:36:12Z
_version_ 1850871877203918848