Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production

A bacterial strain IMBG156 producing exopolysaccharide (EPS) was isolated from siliceous rock and identified as a Paenibacillus species by partial sequencing its 16S rDNA. Paenibacillus sp. IMBG156 was used in a novel technology for inoculant production based on co-cultivating this bacterium with an...

Full description

Saved in:
Bibliographic Details
Published in:Біополімери і клітина
Date:2005
Main Authors: Kozyrovska, N.O., Negrutska, V.V., Kovalchuk, M.V., Voznyuk, T.N.
Format: Article
Language:English
Published: Інститут молекулярної біології і генетики НАН України 2005
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155709
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production / N.O. Kozyrovska, V.V. Negrutska, M.V. Kovalchuk, T.N. Voznyuk // Біополімери і клітина. — 2005. — Т. 21, № 4. — С. 312-318. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155709
record_format dspace
spelling Kozyrovska, N.O.
Negrutska, V.V.
Kovalchuk, M.V.
Voznyuk, T.N.
2019-06-17T11:04:42Z
2019-06-17T11:04:42Z
2005
Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production / N.O. Kozyrovska, V.V. Negrutska, M.V. Kovalchuk, T.N. Voznyuk // Біополімери і клітина. — 2005. — Т. 21, № 4. — С. 312-318. — Бібліогр.: 27 назв. — англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.0006F7
https://nasplib.isofts.kiev.ua/handle/123456789/155709
574:539
A bacterial strain IMBG156 producing exopolysaccharide (EPS) was isolated from siliceous rock and identified as a Paenibacillus species by partial sequencing its 16S rDNA. Paenibacillus sp. IMBG156 was used in a novel technology for inoculant production based on co-cultivating this bacterium with any bacterium of choice. Paenibacillus sp. provides in situ the bacterial cells of the inoculant with EPS, a carrier, and most likely with a source of carbon and energy. The partner bacterium designates a type of inoculant (biopesticide or biofertiliser). The strain IMBG156 does not destroy the signaling system of Gram-negative partners, based on acylated homoserine lactones, stimulates plant growth, and is rather competitive in the plant rhizosphere and soil. A prototype of the inoculant based on dual-culture Paenibacillus sp. IMBG156 - Pseudomonas sp. IMBG163 exhibits a noticeably longer shelf life than monoculture of Pseudomonas sp. IMBG163.
(ЕПС), виділено з силікатної породи та ідентифіковано як Paenibacillus sp. на основі визначення первинної нуклеотидної послідовності 16S рДНК Paenibacillus sp. IMBG156 використа­ но у технологи виробництва мікробних препаратів, яка базуться на спільному культивуванні цієї бактерії та бактерії за вибором. Paenibacillus sp. постачає in situ бактерійні кліти­ни носієм (ЕПС) та, найвірогідніше, є джерелом вуглецю і енергії. Бактерія-партнер визначає тип препарату (біодобриво, біопестицид). Штам IMBG156 не пошкоджує сигнальної системи грамнегативних бактерій-партнерів, яка грунтує­ться на ацильованих гомосеринлактонах, стимулює ріст рос­лини і є доволі конкурентною у ризосфері. У демонстрацій­ному препараті, створеному на основі бактерій-партнерів Paenibacillus sp. IMBGI56—Pseudomonas sp. IMBG163, довше зберігається необхідний титр бактерій, ніж у монокультурі Pseudomonas sp. IMBG163.
A bacterial strain IMBG156 producing exopolysaccharide (EPS) was isolated from siliceous rock and identified as a Paenibacillus species by partial sequencing its 16S rDNA. Paenibacillus sp. IMBG156 was used in a novel technology for inoculant production based on co-cultivating this bacterium with any bacterium of choice. Paenibacillus sp. provides in situ the bacterial cells of the inoculant with EPS, a carrier, and most likely with a source of carbon and energy. The partner bacterium designates a type of inoculant (biopesticide or biofertiliser). The strain IMBG156 does not destroy the signaling system of Gram-negative partners, based on acylated homoserine lactones, stimulates plant growth, and is rather competitive in the plant rhizosphere and soil. A prototype of the inoculant based on dual-culture Paenibacillus sp. IMBG156 - Pseudomonas sp. IMBG163 exhibits a noticeably longer shelf life than monoculture of Pseudomonas sp. IMBG163.
Acknowledgements. We are grateful to Prof. B. Lugtenberg (Leiden University) for providing sequencing data of the rrn gene of Paenibacillus sp. IMBG156 and to Prof. Diethelm Kleiner for critical reading of the manuscript. This work partially supported by Ukrainian Branch of World Wide Laboratory, subcontract N 901 -02-5281-5700-WLU.
en
Інститут молекулярної біології і генетики НАН України
Біополімери і клітина
Клітинна біологія
Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
Paenibacillus sp. — перспективна бактерія для створення технології виробництва бакпрепаратів для рослин
Paenibacillus sp. — перспективная бактерия для создания технологии производства бакпрепаратов для растений
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
spellingShingle Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
Kozyrovska, N.O.
Negrutska, V.V.
Kovalchuk, M.V.
Voznyuk, T.N.
Клітинна біологія
title_short Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
title_full Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
title_fullStr Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
title_full_unstemmed Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
title_sort paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
author Kozyrovska, N.O.
Negrutska, V.V.
Kovalchuk, M.V.
Voznyuk, T.N.
author_facet Kozyrovska, N.O.
Negrutska, V.V.
Kovalchuk, M.V.
Voznyuk, T.N.
topic Клітинна біологія
topic_facet Клітинна біологія
publishDate 2005
language English
container_title Біополімери і клітина
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Paenibacillus sp. — перспективна бактерія для створення технології виробництва бакпрепаратів для рослин
Paenibacillus sp. — перспективная бактерия для создания технологии производства бакпрепаратов для растений
description A bacterial strain IMBG156 producing exopolysaccharide (EPS) was isolated from siliceous rock and identified as a Paenibacillus species by partial sequencing its 16S rDNA. Paenibacillus sp. IMBG156 was used in a novel technology for inoculant production based on co-cultivating this bacterium with any bacterium of choice. Paenibacillus sp. provides in situ the bacterial cells of the inoculant with EPS, a carrier, and most likely with a source of carbon and energy. The partner bacterium designates a type of inoculant (biopesticide or biofertiliser). The strain IMBG156 does not destroy the signaling system of Gram-negative partners, based on acylated homoserine lactones, stimulates plant growth, and is rather competitive in the plant rhizosphere and soil. A prototype of the inoculant based on dual-culture Paenibacillus sp. IMBG156 - Pseudomonas sp. IMBG163 exhibits a noticeably longer shelf life than monoculture of Pseudomonas sp. IMBG163. (ЕПС), виділено з силікатної породи та ідентифіковано як Paenibacillus sp. на основі визначення первинної нуклеотидної послідовності 16S рДНК Paenibacillus sp. IMBG156 використа­ но у технологи виробництва мікробних препаратів, яка базуться на спільному культивуванні цієї бактерії та бактерії за вибором. Paenibacillus sp. постачає in situ бактерійні кліти­ни носієм (ЕПС) та, найвірогідніше, є джерелом вуглецю і енергії. Бактерія-партнер визначає тип препарату (біодобриво, біопестицид). Штам IMBG156 не пошкоджує сигнальної системи грамнегативних бактерій-партнерів, яка грунтує­ться на ацильованих гомосеринлактонах, стимулює ріст рос­лини і є доволі конкурентною у ризосфері. У демонстрацій­ному препараті, створеному на основі бактерій-партнерів Paenibacillus sp. IMBGI56—Pseudomonas sp. IMBG163, довше зберігається необхідний титр бактерій, ніж у монокультурі Pseudomonas sp. IMBG163. A bacterial strain IMBG156 producing exopolysaccharide (EPS) was isolated from siliceous rock and identified as a Paenibacillus species by partial sequencing its 16S rDNA. Paenibacillus sp. IMBG156 was used in a novel technology for inoculant production based on co-cultivating this bacterium with any bacterium of choice. Paenibacillus sp. provides in situ the bacterial cells of the inoculant with EPS, a carrier, and most likely with a source of carbon and energy. The partner bacterium designates a type of inoculant (biopesticide or biofertiliser). The strain IMBG156 does not destroy the signaling system of Gram-negative partners, based on acylated homoserine lactones, stimulates plant growth, and is rather competitive in the plant rhizosphere and soil. A prototype of the inoculant based on dual-culture Paenibacillus sp. IMBG156 - Pseudomonas sp. IMBG163 exhibits a noticeably longer shelf life than monoculture of Pseudomonas sp. IMBG163.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/155709
citation_txt Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production / N.O. Kozyrovska, V.V. Negrutska, M.V. Kovalchuk, T.N. Voznyuk // Біополімери і клітина. — 2005. — Т. 21, № 4. — С. 312-318. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT kozyrovskano paenibacillusspasapromisingcandidatefordevelopmentofanoveltechnologyofinoculantproduction
AT negrutskavv paenibacillusspasapromisingcandidatefordevelopmentofanoveltechnologyofinoculantproduction
AT kovalchukmv paenibacillusspasapromisingcandidatefordevelopmentofanoveltechnologyofinoculantproduction
AT voznyuktn paenibacillusspasapromisingcandidatefordevelopmentofanoveltechnologyofinoculantproduction
AT kozyrovskano paenibacillusspperspektivnabakteríâdlâstvorennâtehnologíívirobnictvabakpreparatívdlâroslin
AT negrutskavv paenibacillusspperspektivnabakteríâdlâstvorennâtehnologíívirobnictvabakpreparatívdlâroslin
AT kovalchukmv paenibacillusspperspektivnabakteríâdlâstvorennâtehnologíívirobnictvabakpreparatívdlâroslin
AT voznyuktn paenibacillusspperspektivnabakteríâdlâstvorennâtehnologíívirobnictvabakpreparatívdlâroslin
AT kozyrovskano paenibacillusspperspektivnaâbakteriâdlâsozdaniâtehnologiiproizvodstvabakpreparatovdlârastenii
AT negrutskavv paenibacillusspperspektivnaâbakteriâdlâsozdaniâtehnologiiproizvodstvabakpreparatovdlârastenii
AT kovalchukmv paenibacillusspperspektivnaâbakteriâdlâsozdaniâtehnologiiproizvodstvabakpreparatovdlârastenii
AT voznyuktn paenibacillusspperspektivnaâbakteriâdlâsozdaniâtehnologiiproizvodstvabakpreparatovdlârastenii
first_indexed 2025-11-26T17:53:51Z
last_indexed 2025-11-26T17:53:51Z
_version_ 1850766337256718336
fulltext ISSN 0233-7657. Біополімери і клітина. 2005. T. 21. № 4 КЛІТИННА БІОЛОГІЯ Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production N . O. Kozyrovska, V . V . Negrutska, M . V. Kovalchuk, T. N . Voznyuk Institute of Molecular Biology and Genetics of the National Academy of Sciences 150 Zabolotnoho str., 03143 Kyiv, Ukraine E. mail: kozyr@imbg.org.ua A bacterial strain IMBG1S6 producing exopolysaccharide (EPS) was isolated from siliceous rock and identified as a Paenibacillus species by partial sequencing its 16S rDNA. Paenibacillus sp. IMBG156 was used in a novel technology for inoculant production based on co-cultivating this bacterium with any bacterium of choice. Paenibacillus sp. provides in situ the bacterial cells of the inoculant with EPS, a carrier, and most likely with a source of carbon and energy. The partner bacterium designates a type of inoculant (biopesticide or biofertiliser). The strain IMBG156 does not destroy the signaling system of Gram-negative partners, based on acylated homoserine lactones, stimulates plant growth, and is rather competitive in the plant rhizosphere and soil. A prototype of the inoculant based on dual-culture Paenibacillus sp. IMBG156 — Pseudomonas sp. IMBG163 exhibits a noticeably longer shelf life than monoculture of Pseudomonas sp. IMBGI63. Key words: exopolysaccharide, inoculant, partner bacteria Introduction. The increasing concern on agroche- micals hazard to health and economical problems have promoted fundamental research in the area of alter­ native agriculture and in search for new agrobiotech- nologies. Recently, tremendous efforts have been invested in studies of molecular mechanisms of plant defense [1—3]. Defense-signaling components have been dis­ covered, and new, effective and sustainable alter­ natives to pesticides proposed. However, at the pre­ sent time a sustainable strategy of crop defense still relies on usage of microbial biological agents able to induce system resistance in crop plants. The microbial inoculants based on the competitive, beneficial for the plant bacteria are considered as a reasonable alter­ native to agrochemicals [4, 5] . It is critical for the © N. O. K O Z Y R O V S K A , V. V. N E G R U T S K A , M. V. K O V A I jC H U K , T. N. V O Z N Y U K , 2 0 0 5 inoculant development that the inoculant product was in a formulation not only to deliver an adequate bacterial population but also to have enough product shelf life. Nowadays, the practical formulations are in use to prolong survival of Gram-negative bacteria [6—11], however, the usage of both mineral and organic carriers for bacteria makes inoculants more expensive. In our previous research we used the exopolysaccharide (EPS) mucilan produced by B. mucilaginosus B-4901 as an inexpensive carrier in the series of inoculants KLEPS (KLityna (a cell, Ukr.) and EPS) to prolong Gram-negative bacteria survival [12]. The inoculants enhanced crop production on poor soils and exhibited enough shelf life. In spite of advantages, the technology of KLEPS development needed a separate stage of EPS manufacture, which complicated the procedure and raised the price of the inoculant. The objectives of this study were to isolate slime-producing bacteria, following the idea to use mailto:kozyr@imbg.org.ua PAENIBACILLUS SP., AS A CANDIDATE FOR A NOVEL TECHNOLOGY EPS as a carrier for inoculant development, and to simplify the two-stage technology of inoculant ma­ nufacture. Materials and Methods. Bacterial strains. The microorganisms used in this work were either from our Institute collection (Paenibacillus sp. IMBG156, Klebsiella oxytoca IMBG26, Rif, Pseudomonas sp. IMBG163, Pseudomonas sp. IMBG168, P. aureo- faciens IMBG288, Agrobacterium sp. IMBG260, P. syringae pv. syringae IMBT295, Xanthomonas axono- podis pv. phaseoli IMBF293) or kindly provided from other collections: P. fluorescens 13525 from ATCC; Pseudomonas sp. AP33 from A. Perebityuk (Institute of Cytology and Genetics of Belarus Academy of Sciences, Minsk); Pantoea agglomerans IMV56 and Erwinia carotovora subsp. atroceptica IMB9027 from R. Gvozdyak (Institute of Microbiology and Virology of NASU, Kyiv); Agrobacterium tumefaciens A136, A tumefaciens NT1 (pTiC58AaccR) and A. tumefaciens NT1 from L. Halda-Alija (Mississippi University). Culture conditions. The media for bacterial gro­ wth were: KB [13] and LB [14] used for all strains of bacteria, except for Paenibacillus sp. being cultured in the medium MZ [12]. Zeolite (10 g/1) was added to LB when needed. Determination of EPS content. Cells of a two-day culture were centrifuged at 10,000 g for 30 min, EPS was extracted from supernatant by 2 v of ethanol and dried at 37 °C until stable weight was obtained. Bacteria isolation procedures were performed us­ ing the samples of zeolite collected from Sokyrnytzya (Transkarpatian region) and fragments of silica rocks originated from Khmelnitsky region. In separate ex­ periments 1 g of zeolite or silica rocks (fraction of 5 mm) was incubated in MZ for 48 h at 30 "C. The accumulating cultures were diluted serially and spre­ ad on selective MZ medium. Slime colonies were collected, bacteria were purified, and identified accor­ ding to N. Krasilnikov [15]. Total DNA isolation was performed as recom­ mended in [16]. Amplification, purification, and analysis of 16S rDNA. PCR primers pair of pA (8—27) and pH (1542—1523) described in [17] was used for identi­ fication of the rrn (16S rRNA) gene, and specific sequences of two selected isolates were detected at the annealing temperature of 52 °C and the standard concentration of MgCl2 (1.5 mM). The reaction was performed with 25 pmol of each primer («Sigma», USA), 50 f*M dNTP-mix, 2 U of Taq-DNA-poly- merase (both reagents from «Fermentas», Lithuania). Amplification was carried out in ALF thermal cycler («Pharmacia», Sweden). Initial denaturation was per­ formed at 98 °C for 3 min, then Taq-DNA-poly- merase was added. The thermal profile involved 28 cycles of penetration temperature of 93 °C for 30 s, primer annealing at 52 °C for 30 s and 72 "C for 1 min. Amplicons were checked on a 2.0 % agarose gel. Purification of amplicons was performed with UltraClean™ PCR Clean-up™ Kit (MoBio Labo­ ratories Inc., USA). Analysis of PCR products per­ formed by Blast N search program (NCBI, htt- p://www.ncbi.nlm.nih.gov). A phylogenetic tree was constructed by the program ClustalW 1.83 (http://w- ww.genebee.msu.su/genebee.html). Co-cultivating of partners was performed in MZ. After 30 h of co-cultivating, the serial dilutions were made for evaluation of population size. The partner cultures were detected on LB or KB agar, Paeni­ bacillus sp. — on MZ plates. Assay for production of signaling molecules. Bac­ terial strains (separately and in pairs with Paenibacil­ lus sp.) were tested in cross-feeding assays for acylated homoserine lactones (AHLs), using the indi­ cator strain A tumefaciens A136 as recommended in [18]. Antibacterial activity was tested in vitro on Petri dishes by the standard agar-diffusion assay, using two layer agar with the upper layer of an indicator culture soft agar (0.4 % ) . Detection of the acetylene reductase (nitrogenase) activity (ARA) was performed according to [19]. The ARA of K. oxytoca IMBG26 was detected with the gas chromatograph Tzvet (Cheh Republic) in 14 ml flasks where the bacterial culture was grown in an N-free medium supplemented with sucrose or EPS (final content 1.5 and 1.0 %, respectively) in the presence of 10 % acetylene within 16 h at 28 °C. Plant growth conditions, bacteria inoculation and re-isolation. Ten wheat germinated seeds were inocu­ lated with a washed overnight monoculture, a dual culture or a suspension of bacterial strains mixed in equal proportions (10* colony forming units, CFU/ml) and placed in zeolite (Sokyrnytzya deposit). Control plants were left non-inoculated. The plants were maintained under natural light at 20 °C in a growth chamber. The plants were watered once per two days. At the end of the experiment (14 days after ino­ culation) all plants were harvested and external root colonization was examined. Root sections of 100 mg 313 file:///www.ncbi.nlm.nih.gov http://w- http://ww.genebee.msu.su/ KOZYROVSKA N. O. ET AL. N o t e . Error represents standard deviation. Treatment is different from the control at p - 0.05 as determined by Student's f-test. Values followed by the same letter in a column are not significantly different. were vortexed in 0.9 % NaCl, and serial dilutions were plated on selective media LB, KB, MZ supple­ mented with rifampicin (50 /ig/ml) when needed to discriminate between bacteria. Statistical analysis of results. The data on bio­ metrical parameters of wheat and bacteria survival are means from three replications. Statistical analysis was performed using SigmaPlot 8.0 software. Standard deviations were calculated for each data point. Nucleotide sequence accession number. The se­ quence generated in this study has been deposited in the GenBank database under accession number AY645946. Results and Discussion. Phenotypic characteris­ tics. Two isolates (from zeolite and silica rock, designed IMBG156 and IMBG157) were characterized as aerobic Gram-positive rods of (0.2—0.5) • 2.0 fim which formed spores of 0.5—0.7 /nm. The spore position was preferentially central but terminal lo­ cation was rarely observed. The optimal temperature of growth was 28 °C, but they grew well in a range of 10—45 "C. On the agar MZ medium they created transparent slime colonies of 10.0—13.0 mm diameter and produced 10.0—13.0 g EPS per 1 1 of liquid medium. The isolates consumed carbohydrates, ge­ nerated acids, and did not utilize amino acids as C and N sources. Bacteria hydrolyzed starch and could not grow anaerobically with nitrate as a respiratory substrate. We did not manage to determine the taxonomic position of the isolates with Bergy's deter­ minative manual. To clarify their systematic position, it was practical to analyze the phylogenetic marker gene, rrn, encoding RNA of small subunit of ribosome (16S). Analysis of the 16S rDNA amplicon. The 16S rDNA amplicons were obtained from IMBG156 of 1500 bp in PCR, and a sequence of 621 bp was deciphered and aligned with the most closely related bacterial sequences. The sequence shared 97 % similarity to the deposited sequence for Paenibacillus velasolus. In a phylogenetic tree based on sequencing data this isolate clustered with P. velasolus, however, more efforts were needed to prove or disprove rela- 7-1 Fig 1. Average size of populations of bacterial strains associated with wheat roots: two weeks after inoculated seed planting tedness of the isolate to P. velasolus, and in this study we did not use a species name. Effects of the bacterium on growth of wheat and survival in the plant rhizosphere. Relation to the plant of the assistant bacterium planned for the inoculant development should be at minimum neutral, but not antagonistic. The tests showed that strain IMBG156 •31 A PAENIBACILLUS S P . , AS A C A N D I D A T E FOR A NOVEL TECHNOLOGY 11 -~10 I 3 9 • a monoculture • a dual culture • a monoculture+zeolite —i 1 i 1 1 1 i - i 0 20 40 Time, days Fig. 2. Dynamics of survival of Pseudomonas sp. IMBG 163 in dependence on culture conditions did not cause a phytotoxic effect and increased wheat shoot height as shown in Table 1. Being applied together with Pseudomonas sp. IMBG163 for seed inoculation, it promoted plant growth more efficiently. In the rhizosphere of wheat inoculated by a rationally assembled consortium of plant growth promoting rhizobacteria (Pseudomonas sp. IMBG163, P. aureo­ faciens IMBG288, K. oxytoca IMBG26), the strain IMBG156 was quite competitive on background of beneficial bacteria (Fig. 1). Co-cultivation of Paenibacillus sp. IMBG156 with bacteria of interest. With the idea to keep bacteria alive in the gel produced by bacteria within co- cultivation, Paenibacillus sp. and chosen Gram-ne­ gative bacteria were cultured by pairs. The results of experiments on co-cultivating showed practically the absence of restrictions in picking up partners for Paenibacillus sp. (Table 2). The partners gained a population size of log 9—10 CFU/ml. The critical factors in the one-step procedure of prototype ino- culant manufacture were the size of population of a strain that determined a sort of inoculant, and also the concentration of EPS produced by Paenibacillus sp. In the case of co-cultivating IMBG 156 together with K. oxytoca IMBG26 or Pseudomonas sp. IMBG163, the culture gel contained 1.4±0.05E+9 or 2.5±0.09E+9 CFU/ml of a bacterium-partner, res­ pectively, and not less than 20.0 g/1 of EPS. A term of the inoculant shelf life is important when the inoculant is based on Gram-negative bac­ teria. We showed that survival of Pseudomonas sp. IMBG 163 was prolonged in the dual culture with Paenibacillus sp. in comparison with the monoculture (Fig. 2). A better survival of IMBG 163 was also observed in a minimal medium supplemented with zeolite. The results showed that the strain IMBG 163 preserved the population size at the level of log 9 CFU/ml in both dual culture and monoculture grown in the presence of zeolite within 2 months. On the contrary, the population size of IMBG 163 de­ clined from log 10 to log 7 CFU/ml without co- inoculation by Paenibacillus sp. IMBG156 or addition of the mineral to the medium. This clearly de­ monstrated that both Paenibacillus and zeolite sup­ ported survival of Pseudomonas sp. IMBG163. K. oxytoca IMBG26 was able to grow and reduce ace­ tylene (518 nM C 2 H 4 / h flask) in the nitrogen-free medium where 1.0 % EPS (derived from Paeni­ bacillus sp. IMBG156) was used as a carbon source, and this suggested that EPS produced by Paeni­ bacillus had the potential to support growth and activity of the partner. 315 •Indicator phytopathogenic bacteria: I — P. syringae pv. syringae IMBG295; II — Erwinia carotovora subsp. atroceptica IMB9027; III — Xanthomonas axonopodis pv. phaseoli IMBG293; **diameter of zone of suppression of indicator bacteria (mm): 2 — 10.0—20.0; 3 — 21.0—30.0; 4 — 31.0. Detection of antibacterial activity in dual cultures. Signaling systems play a role in bacteria-bacteria and plant-bacteria communications [20]. Antibacterial ac­ tivity of some pseudomonads is controlled with AHLs [21, 22]. It is well known that Gram-positive bacteria are able to destroy AHLs of Gram-negative neighbors [23 ]. To compose dual bacterial pairs, it is important to know that quorum signaling is not impaired by co-cultivation. Bacteria used in experiments on co- cultivation were tested in cross-feeding assays for AHL4_14 detection earlier [24 ]. Few of them produced AHLs (Pseudomonas sp. IMBG163, Pseudomonas sp. IMBG168 and P. auerofaciens IMBG288), and no difference was observed between mono- and dual Pseudomonas-Paenibacillus cultures with respect to AHL production. The results represented in Table 3 showed inhibition of pathogenic bacteria by both monocultures of pseudomonads and appropriate dual Pseudomonas-Paenibacillus cultures. This may mean that strain Paenibacillus sp. IMBG156 did not impair AHLs produced by a partner and indirectly demon­ strated integrity of AHLs in dual cultures. Paenibacillus sp. IMBG156 has been selected as a bacterium-nurse for the dual-culture technology of inoculant development, first of all, due to production of large amounts of EPS. The strain IMBG156 provided the living cells of a bacterium-partner, the second species of two-component consortium, with a carbon source and apparently caused better survival of the latter. In this study IMBG156 displayed commensal interactions in the pairs with other bac­ terial strains and synergistic positive impact on the plant. These results are consistent with those ob­ tained for other bacteria acting synergistically on the plant development [25, 26]. IMBG156 was quite competitive in the plant rhizosphere bacterial com­ munity and in the soil, in contrast to the known data on the gradual replacement of Paenibacillus by Pseu­ domonas [27]. These additional beneficial features make the strain rather promising for application for seed inoculation in programs of plant health care and soil remediation in company with biocontrol bacteria. The inoculants, containing both Paenibacillus sp. IMBG156 and a partner bacterium, can be stored for a relatively long period of time in the presence of large amounts of EPS produced in situ without preservatives and conventional carriers. This finding is based on a concept of keeping bacteria alive under storage of the dual culture in a gel and may be explained, first of all, by the fact that growing any Gram-negative bacterium with Paenibacillus sp. IMBG156 results in stimulation of EPS production which can serve both as a carbon and energy source for the bacterium-partner. In case when EPS serves as a carrier, the organisms appear to establish struc­ tured populations where cells are not aggregated. Under this condition the bacteria are positioned in a heterogeneous environment with gradients of nutri­ ents and waste products as a consequence of diffusion and mass transport processes, and it is therefore to be expected that this heterogeneity is reflected in the physiology of the individual cells and better survival. EPS keeps up water and nutritional regime, and therefore bacterial cells are physiologically active under storage, in contrast to a dry KLEPS formu­ lation where bacteria were dormant. The dual-culture technology based on co-cultivating the bacterium Paenibacillus sp. IMBG156 and any bacterium of choice is simpler and less expensive compared to the previous technology [12]. PAENIBACIIXUS St., AS A CANDIDATE FOR A NOVEL TECHNOLOGY Acknowledgements. We are grateful to Prof. B. Lugtenberg (Leiden University) for providing se­ quencing data of the rrn gene of Paenibacillus sp. IMBG156 and to Prof. Diethelm Kleiner for critical reading of the manuscript. This work partially sup­ ported by Ukrainian Branch of World Wide Labo­ ratory, subcontract N 901 -02-5281-5700-WLU. H. О. Козировська, В. В. Негруцька, М. В. Ковальчук, Т. М. Вознюк Paenibacillus sp. — перспективна бактерія для створення технології виробництва бакпрепаратів для рослин Резюме Штам бактерій IMBG156, який продукує екзополісахарид (ЕПС), виділено з силікатної породи та ідентифіковано як Paenibacillus sp. на основі визначення первинної нуклеотидної послідовності 16S рДНК Paenibacillus sp. IMBG156 використа­ но у технологи виробництва мікробних препаратів, яка ба- зуться на спільному культивуванні цієї бактерії та бактерії за вибором. Paenibacillus sp. постачає in situ бактерійні кліти­ ни носієм (ЕПС) та, найвірогідніше, є джерелом вуглецю і енергії. Бактерія-партнер визначає тип препарату (біодоб- риво, біопестицид). Штам IMBG156 не пошкоджує сигнальної системи грамнегативних бактерій-партнерів, яка грунтує­ ться на ацильованих гомосеринлактонах, стимулює ріст рос­ лини і є доволі конкурентною у ризосфері. У демонстрацій­ ному препараті, створеному на основі бактерій-партнерів Paenibacillus sp. IMBGI56—Pseudomonas sp. IMBG163, довше зберігається необхідний титр бактерій, ніж у монокультурі Pseudomonas sp. IMBG163. Ключові слова: екзополісахариди, бакпрепарат, бактерії- партнери. Н. А. Козыровская, В. В. Негруцкая, М. В. Ковальчук, Т. Н. Вознюк Paenibacillus sp. — перспективная бактерия для создания технологии производства бакпрепаратов для растений Резюме Штамм бактерии IMBG156, продуцирующий экзополисахарид (ЭПС), выделен из силикатной породы. Он идентифицирован как Paenibacillus sp. на основе определения первичной нуклео- тидной последовательности 16S рДНК. Paenibacillus sp. IMBG156 использован в технологии производства микробиоло­ гических препаратов, основанной на совместном культивиро­ вании этой и выбранной бактерий. Paenibacillus sp. снабжает in situ клетки бактерий носителем (ЭПС) и является, наибо­ лее вероятно, источником углерода и энергии. Бактерия-пар­ тнер определяет тип препарата (биоудобрение, биопестицид). Штам IMBG156 не повреждает сигнальной системы грам- мотрицательных бактерий-партнеров, которая основывается на аицлированных гомосеринлактонах, стимулирует рост растений и является достаточно конкурентоспособной в ри­ зосфере. В демонстрационном препарате, созданном на базе бактерий-партнеров Paenibacillus sp. IMBG156—Pseudomonas sp. IMBG163, дольше сохраняется необходимый титр бакте­ рий, чем в монокультуре Pseudomonas sp. IMBG163. Ключевые слова: экзополисахариды, бакпрепарат, бактерии- партнеры REFERENCES 1. Veronese P., Ruiz M. Т., Coca М. A., Hernandez-Lopez А., Lee Н., Ibeas J., Damsz В., Pardo J. M., Hasegawa P. M., Bressan R. A., Narasimhan M. L. In defense against patho­ gens. Both plant sentinels and foot soldiers need to know the enemy / / Plant Physiol.—2003:—131.—P. 1580—1590. 2. Zeidler D., Zahringer U., Gerber I., Dubery I., Hartung Т., Bars W., Hutzler P. Innate immunity in Arabidopsis tnaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defence genes / / Proc. Nat. Acad. Sci. USA.—2004.— 101.—P. 15811—15816. 3. Cui J., Bahrami A. K, Pringle E. /., Hernandez-Guzman G, Bender C. L, Pierce N. E., Ausubel F. M. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores / / Proc. Nat. Acad. Sci. USA.—2005.—102.— P. 1791—1796. 4. Thomashow L S., Weller D. M. Current concepts in the use of introduced bacteria for biological disease control: mecha­ nisms and antifungal metabolites / / Plant-microbe interactions / Eds G. Stacey, N. T. Keen.—New York: Chapman & Hall, 1996.—Vol. 1.—P. 187—235. 5. Emmert E., Handelsman J. Biocontrol of plant disease: a (gram-) positive perspective / / FEMS Microbiol. Lett.— 1996.—171.—P. 1—9. 6. Ocumpaugh W. Я, Smith G. R. Granular inoculum enhances establishment and forage production of arrowleaf clover / / J . Prod. Agric—1991.—4.—P. 219—224. 7. Olsen P. E., Rice W. A., Bordeleau L M., Demidoff A. H, Collins M. M. Levels and identities of nonrhizobial microor­ ganisms found in commercial legume inoculant made with nonsterile peat carrier / / Can. J. Microbiol.—1996.—42.— P. 7 2 - 7 5 . 8. Walter J. F., Paau A. S. Microbial inoculant production and formulation / / Soil Microbial Ecology: Applications in Agricul­ tural and Environmental Management / Eds F. B. Metting, Jr.—New York: Marcel Dekker, Inc., 1997.—P. 579—594. 9. Manjula K, Pogile A. R. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1 / / Can. J. Microbiol.—2001.—47.— P. 618—625. 10. Russo A., Basaglia M., Tola E., Casella S. Survival, root colonisation and biocontrol capacities of Pseudomonas fluores­ ces F113 LacZY in dry alginate microbeads / / J. Ind. Microbiol. Biotechnol.—2001.—27.—P. 337—342. 11. Temprano F. J., Albareda M., Camach M., Daza A., San- tamaria C, Rodrigues-Navarro D. N. Survival of several RhizobiumlBradyrhizobium strains on different inoculant for­ mulations and inoculated seeds / / Int. Microbiol.—2002.—5.— P. 81—86. 12. Kozyrovska N., Kovtunovych G., Gromosova O., Kuharchuk P., Kordyum V. Novel inoculants for an environmentally- friendly crop production / / Resources, Conservation and Recycling.—1996.—18.—P. 79—85. 13. King E. O., Ward M. K, Raney D. E. Two simple media for the demonstration of pyocyanin and fluorescin Hi. Lab. Clin. Med.-1954.—44.—P. 301-307 . 14. Миллер Д. Эксперименты в молекулярной генетике / / Под ред. С. И. Алиханяна.—М.: Мир, 1976.—430 с. 15. Krasilnikov N. A. Determinative mannual for bacteria and actinomycetes.—Moscow: Ed. Acad. Sci. USSR, 1949.—176 p. 16. Sambrook J., Fritsch E. P., Maniatis T. Molecular cloning: a laboratory manual.—New York: Cold Spring Harbor Lab. press, 1989.—472 p. 317 KOZYROVSKA N. О. ET AL. 17. Edwards U., Rogal T., Btoecker M., Boettger E. C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA / / Nucl. Acids Res.—1989.—17.—P. 7843—7853. 18. Fuqua C, Winans S. C. Conserved cis-acting promoter ele­ ments are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes / / J. Bacteriol.—1996.—178.—P. 435—440. 19. Postgate J. R- The acetylene reduction test for nitrogen fixation / / Methods in microbiology / Eds J. R. Norris, D. W. Ribbons.—London; New-York: Acad, press, 1972.—P. 343— 356. 20. Fuqua C, Winans S. C, Greenberg E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators / / J. Bacterid.—1994.—176.— P. 269-275. 21. Chancey S. T., Wood D. W., Pierson, III, L. S. Two-com­ ponent transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens II Appl. Environ. Microbiol.—1999.—65.—P. 2294—2299. 22. Delany I., Sheehan M. M., Fenton A., Bardin S., Aarons S., O'Gara F. Regulation of production of the antifungal metabolite 2.4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor / / Microbiology.—2000.—146.—P. 537—546. 23. Dong Yi-Hu, Xu Jin-Ling, Li Xian-Zhen, Zhang Lian-Hui. AHA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora II Proc. Nat. Acad. Sci. USA.—2000.—97 — P. 3526—3531. 24. Kovalchuk M. V., Negrutska V. V., Kozyrovska N. O. Charac­ teristics of pseudomonads as candidates for a novel inoculât based on the Dual technology / / Agroecologichny Zhurnal (J. Agroecol.).—2004.—2.—P. 41—45. 25. Alagawadi A. R., Gaur A. C. Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land / / Trop. Agric—1992.—69.— P. 347—350. 26. Bent E., Tuzun S., Chanway C. P., Enebak S. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria / / Can. J. Microbiol.—2001.— 47.—P. 793—800. 27. Molbak L, Licht T. R., Kvist T., Kroer N.. Andersen S. Plasmid transfer from Pseudomonas putida to the indigenous bacteria on alfalfa sprouts: characterization, direct quantifica­ tion, and in situ location of transconjugant cells / / Appl. Environ. Microbiol.—2003.—69.—P. 5536—5542. УДК 574:539 Надійшла до редакції 25.06.04 318