Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number s of vertices is at most 7. For 2 ≤ 6 s ≤ 5 we have that all a...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2003 |
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2003
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/155712 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 47–86. — Бібліогр.: 44 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The main concept of this part of the paper is
that of a reduced exponent matrix and its quiver, which is strongly
connected and simply laced. We give the description of quivers of
reduced Gorenstein exponent matrices whose number s of vertices
is at most 7. For 2 ≤ 6 s ≤ 5 we have that all adjacency matrices of
such quivers are multiples of doubly stochastic matrices. We prove
that for any permutation σ on n letters without fixed elements
there exists a reduced Gorenstein tiled order Λ with σ(ε) = σ.
We show that for any positive integer k there exists a Gorenstein
tiled order Λk with inΛk = k. The adjacency matrix of any cyclic
Gorenstein order Λ is a linear combination of powers of a permutation matrix Pσ with non-negative coefficients, where σ = σ(Λ).
If A is a noetherian prime semiperfect semidistributive ring of a
finite global dimension, then Q(A) be a strongly connected simply
laced quiver which has no loops.
|
|---|---|
| ISSN: | 1726-3255 |