Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II

The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number s of vertices is at most 7. For 2 ≤ 6 s ≤ 5 we have that all a...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2003
Автори: Chernousova, Zh.T., Dokuchaev, M.A., Khibina, M.A., Kirichenko, V.V., Miroshnichenko, S.G., Zhuravlev, V.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/155712
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 47–86. — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155712
record_format dspace
spelling Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
2019-06-17T11:08:34Z
2019-06-17T11:08:34Z
2003
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 47–86. — Бібліогр.: 44 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16P40, 16G10.
https://nasplib.isofts.kiev.ua/handle/123456789/155712
The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number s of vertices is at most 7. For 2 ≤ 6 s ≤ 5 we have that all adjacency matrices of such quivers are multiples of doubly stochastic matrices. We prove that for any permutation σ on n letters without fixed elements there exists a reduced Gorenstein tiled order Λ with σ(ε) = σ. We show that for any positive integer k there exists a Gorenstein tiled order Λk with inΛk = k. The adjacency matrix of any cyclic Gorenstein order Λ is a linear combination of powers of a permutation matrix Pσ with non-negative coefficients, where σ = σ(Λ). If A is a noetherian prime semiperfect semidistributive ring of a finite global dimension, then Q(A) be a strongly connected simply laced quiver which has no loops.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
spellingShingle Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
title_short Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
title_full Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
title_fullStr Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
title_full_unstemmed Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
title_sort tiled orders over discrete valuation rings, finite markov chains and partially ordered sets. ii
author Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
author_facet Chernousova, Zh.T.
Dokuchaev, M.A.
Khibina, M.A.
Kirichenko, V.V.
Miroshnichenko, S.G.
Zhuravlev, V.N.
publishDate 2003
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description The main concept of this part of the paper is that of a reduced exponent matrix and its quiver, which is strongly connected and simply laced. We give the description of quivers of reduced Gorenstein exponent matrices whose number s of vertices is at most 7. For 2 ≤ 6 s ≤ 5 we have that all adjacency matrices of such quivers are multiples of doubly stochastic matrices. We prove that for any permutation σ on n letters without fixed elements there exists a reduced Gorenstein tiled order Λ with σ(ε) = σ. We show that for any positive integer k there exists a Gorenstein tiled order Λk with inΛk = k. The adjacency matrix of any cyclic Gorenstein order Λ is a linear combination of powers of a permutation matrix Pσ with non-negative coefficients, where σ = σ(Λ). If A is a noetherian prime semiperfect semidistributive ring of a finite global dimension, then Q(A) be a strongly connected simply laced quiver which has no loops.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155712
citation_txt Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 47–86. — Бібліогр.: 44 назв. — англ.
work_keys_str_mv AT chernousovazht tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsii
AT dokuchaevma tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsii
AT khibinama tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsii
AT kirichenkovv tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsii
AT miroshnichenkosg tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsii
AT zhuravlevvn tiledordersoverdiscretevaluationringsfinitemarkovchainsandpartiallyorderedsetsii
first_indexed 2025-12-07T15:23:15Z
last_indexed 2025-12-07T15:23:15Z
_version_ 1850863512725749760